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For entire functions f(z) = ¥7_,a;z’ whose coeflicients satisfy the smoothness
condition a;, ,a,,,/af — 7 as j — x we investigate the asymptotic behavior as
n — x of the normalized partial sums s,(za, /a4, ,,) and the normalized Padé
numerators P,  (za,/a, . ), m fixed. As a consequence we deduce results on the
limiting behavior of the zeros of these polynomials. < 1994 Academic Press. Inc.

1. INTRODUCTION AND MAIN RESULTS

Let
f(z) = Y a2
j=0
be an entire function in the complex plane C with a; # 0 for all j (j € N)
sufficiently large. We set
a; a4
n, = ;_2,’__,_ (1.1)

a;

The basic assumption throughout the present work is that
n,—n as j — o, (1.2)
which we call the Lubinsky smoothness condition (see [1]).
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The function

x
HT,(Z) = Z 77/'(JH)/ZZJ
=0

plays an important role in our investigation. It is clear that for |n| < 1,
H (z)is an entire function. If |n| = 1, then H_ is holomorphic in the unit
disk; in the case when |n| > 1, the radius of convergence is zero. We
notice that H (z) = h (nz), where A (z) is the partial theta function.

We denote by 5,(z) = s5,(f, z) the nth partial sum of the Maclaurin
expansion for f:

"
S"(Z) = Z a]-z’.

Jj=0

Our first result describes the asymptotic behavior of normalized partial
sums.

Tueorem 1.1,  Assume that (1.2) holds with (i) [n] < 1 or (i) In| =1
and |n,| <1 for all j large enough. Then, in case (i),

Sn( “an/an+ 1 )/{an(uan/anww)”} - Hn( 1/") ( 13)

as n — x locally uniformly in C — {0} and, in case (ii),

Sn(uau/aru»l)/{au( Man/“n«kl)"} - Hn( 1/“) (14)

locally uniformly in {u: lu| > 1},

(As usual, “locally uniformly” means uniform convergence in the metric
of Chebyshev on compact subsets.)

For each pair (n,m) € N%, let 7, ,, (= m, ,.(f)) be the classical Padé
approximant to the function f of type (n,m). Recall that =, , =p/q,
degp < n, deg g < m, g # (0, where the polynomials p and g are deter-

mined by the condition
(fg —p)(z) =0(z"""*")y  asz - 0.

It is well known that for each pair (n, m) the function w, . exists and is
uniquely determined (see, e.g., [2]). We write

Tyom = RI,HI/QN.IU’
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where @, ,{0) = land P, ,, and Q, ,, do not have a common divisor. Let

n.m m n.om

D(n,m)=det(a, ;. )} s D(n,0) =1,

be the Toeplitz determinant formed from the coeflicients of the Maclaurin
expansion for f. It is known (see, e.g., [3, 4]) that if m is fixed and f is not
equal to a rational function having at most m poles in C, then D(n, m) # 0
for an infinite sequence N' € N and 7, ,, = 7, ,,» where k(n) := max{k:
k <n, k € N'}. If f is rational with a denominator of degree < m, then
m, A f) = f for all n € N sufficiently large. Without loss of generality, we

shall assume hereafter that N’ = N. In this case there holds (sce [2])

(an.m - Pn,m)(z) = a”.mZ"-H"*] + e,

with a # () and

nom

a, a, .4 U A, im—i a,sm
an—l an e an+m an+n17l
-1 .
Qn.m(z) ZD(”'m)
Ay m+1 Ay 2 a, a4
Zm Zm‘l v z i
(1.5)
Direct calculation also shows that
D(n,m + 1)
— N -
[)n.m(z) =2 D(n,m) + +du,m‘

The next result supplies information about the behavior of the zeros of
7, m{f) as n — o in the case when the numbers 7, tend to n “smoothly
enough”; namely, there exist complex numbers {c,J7 with ¢, # 0 such that
for each positive integer N > 1,

N
n=m-{l+c i '+ Y cj i +o(i") as j — . (1.6)
i=2
This kind of convergence has been introduced and studied by D. S.

Lubinsky in [1].

TheoreMm 1.2, Let the entire function f be given and m € N be fixed.
Assume that a; # O for j large enough and that (1.2) holds with n = 1.
Assume further that m, admits the expansion (1.6) with ¢, # 0 and that
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In;l < 1 for all j sufficiently large. Then

1
Rum(uan/an+l) "t
-

- (ua,/a,. ) {(D(n,m+ 1)/D(n,m)} (u —1)""!
(1.7)

RILNZ( ll) ;

as n — o locally uniformly in {u: lu| > 1}.

Notice that for m = 0, we have R, (u) = slua,/a,. )/
{a,(ua,/a,,. )"} and the conclusion of Theorem 1.2 coincides with the
conclusion of Theorem 1.1 in the special case when n = 1.

CororLLary 1.3, With the assumptions of Theorem 1.2, for each fixed
m € N and any ¢ > 0, the Padé approximant w, (z) has no zeros in
Iz| > la,/a, (1 + €) for all n large.

Set

R := liminfla,/a,, !I.
n—x

Then, if R < o, there is an infinite sequence N” C N such that the zeros
of m, ,(z), n € N”, have all their accumulation points in the closure of
the disk Dy = {z: |z| < R}. On the other hand, it has been established in
(1] that =, ,(z) — f(z) locally uniformly inside Dy, so that any compact
set in the interior of Dy contains not more than finitely many accumula-
tion points of the zeros of {m, .}, ... Consequently, all the zeros of =, ,,
with the exception of a finite number tend to D, = {z: |z| = R} as
n—xneN,

Examples of functions to which Theorem 1.2 may be applied are the
exponential function

x©

flz) =e'= L2/

j=0

(see [5]), the Mittag—Lefler function of order A (> ()),

o

flz) = X 2//I(1 +j/A)
j=0
(see [6]), as well as the function

flzy =Y (i 2

j=0
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The next result provides more precise information concerning the limit
points of the zeros of the sequence {m, ,(f)} as n — = for a special class
of entire functions f.

.m

Tueorem 1.4, If ¢, < 0 in (1.6), then for each fixed m > 0, the point
u = 1is a limit point of zeros of the functions (R, ,(u)),_ in (1.7).

Cororrary 1.5. Under the conditions of Theorem 1.4, for each fixed
m € N and any &€ > 0, the Padé approximant 7w, ,(z) has at least one zero
in the annulus

‘ all
a1y

It follows from Corollary 1.5 that there is a sequence L C N such that at
least one zero of m, ,(z) tends to z = x as n — oo, n € L, and the speed
of the attraction is like la,/a, . If liminf la,/a, . ] = », then
L =N.

Before we continue, we introduce the polynomials B, (u) = B, (u, g).
which are defined recursively as follows: By(u) = 1 and for m = 1,2,...,

Bm(u) = Bm—- l(u) - “qmilefl( ll/q). ( 18)
When ¢ is not a root of unity, it can be shown that

m (1 _ qm)(l _ qul) Ca s (1 _ qm+1*1) )
B (-u)= = s
m( ll) jgn (l_q)(l'q‘)(l—q}) U

a"

(1 —¢) <]zl <

‘(1 + ¢)

n+ 1

for n large.

H—x

furthermore, B, (u) = (1 — u)”, when g = 1.

Details concerning the polynomials B,,, m = (0,1,2,..., can be found
in [7). These polynomials are of importance in the investigation of the
distribution of the zeros of =, ,. in the case when the number n in (1.2) is

n.m

not a root of unity. The following theorem is valid:

THEOREM 1.6.  Assume that (1.2) holds for a number w that is not a
root of unity. Then, for the Padé approximants m, ,, associated with f there
holds locally uniformly in C\ .48,

ne

llm {Wll.lrl(uan/an+l) - Su(uan/an+l)}/{an( uan/au*l)”]
m-1( _ k*‘n’\' 1 — n/
_ Z ( “) j;l( "7)’ (19)
k=0 B (u)By \(u)

where #,, denotes the set of zeros of B|,..., B

m-
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CorovLary 1.7, If condition (i) or (i) of Theorem 1.1 holds and 7 is
not a root of unity, then for the Padé numerators P, we have

Pn m( “an/an +1 )
T Bm( I,l)

lim
nox (I”( ua,,/a,, +1 )

Hn(i) - i (=) T (1 - )

u P B (u) B, \(u)

for u in the appropriate region described by Theorem 1.1.

2. Proor oF THEOREM 1.1

Since the asymptotic results stated in Section | are not affected by the
values of finitely many of the coefficients a;, we assume for simplicity that
a; # 0 for all j = 0.

The proof of Theorem 1.1 requires the following simple lemma.

Lemma 2.1, For each pair of positive integers (n, 1) such thatn — 1 > 0,

~1 Ay o
=( ) Anlﬂz’fw\-—l- (2.1)

a

n

Proof. 'The proof is based on the equality
ar1+la;1 = nnanarrfli’ l = i 1
Let n be fixed. It is easy to verify that

_2 >
an—Z/an = (an+l/an) nnflnr.:'

Therefore, (2.1) is true for { = 1 and I = 2. Now suppose that (2.1) is valid
for I — 1 and ! with 3 </ < n. We write

an*l*l/an = (an—l—l/an—/) : (anAl/an)
= T’n—l(an‘l/anflwtl)(anﬁl/an)

2 -1
= 77;.—1(“;:4/“;1) (an~l+l/an)
-1

!
-2/ 2k —k I—1
= n,,,,(a”+|/a”) AI—II Mw—1+k kl_Ilnn—l-f-l+k : (an+l/an)

!
—1-1 2 k+1
= (an+l/an) My—tMn—i+1 knznn—l+k

which vields (2.1) for { + 1, as required. |
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For the proof of Theorem 1.1 we first set

Z,(u) =s,(ua,/a,. )/|a,(ua,/a,, )" (2.2)

and apply Lemma 2.1 to obtain

n J
Z”(ll) = 1 + Z ufj I_In:n.f\'fj' (22)

j=1 s=1
Denote by Z, ,(u) the kth partial sum of Z (u), k &€ N. We notice that
for any fixed positive integer &, it follows from (1.2} that
k

Zn.k(”) - Z l"jnj(jﬂ)/z, as n — o, (23)
=0

locally uniformly in C — {0}. Since the limit polynomial in (2.3) is just the
k th partial sum of the Laurent series for H,(1/u) about infinity, the proof
of Theorem 1.1 will follow by estimating the function

{n‘k(u) = Zn(“) - Zn.k(u) = Z bn,j/“j’
Jj=k+1

where
J
bn.j = I_.[ln;§1+sfj' (2'4)
s=

Proof of Theorem 1.1(1). Suppose that [n| < 1. Let & be a fixed
positive number, £ < 1, and k, be a positive integer such that for all
k > k, we have

nx = supln,l <1
=k

and
() 2 < e 2. (2.5)

Now let n be an integer with n > 2k. We write

n—k+1 n

Go(u) = X b u'+ 3 b, /ul = G (u) + L),

j=k+1 J=n—k+2
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By (2.5), we have for £ > k,,

n—Kk+1

1o < () 2 e) X () h )
j—k+1
n—2k+1
<(1/2" L (/2 =/ (2.6)

s—1

For £{*) we obtain the following estimate for k > k,,

I
2
gr(l,)k(“)”r'g\u\ < Z
k

Joon-

k ji—1 /+nfk
£eom A'(nm T mm)

2 s 1 s—k-n+j

k-n+j—1 J
81( l—[ ‘n;‘zfjf\' n l"h\,,«\')

<
§—J
k 2 bl
S L 5 )

< ZlnT'U I)j/‘.|_r'z<|(n k+2j¥n /\+l)/-/FIH,7/\

j-2

- n— /xw‘l)/’ n-k . n k+1 J
= C|("")( i ) Z( /“) )

l‘\)

I(/ I)J/’

where C(k) = max,_,_, I} Thus from (2.5), we see that for

n > 2k

"k Z (1/2)) < 2%C(k)(1/2)".

Jj=2

NZSBL < < Ci(k)(1/2)

Combining (2.6) and the last inequality, we deduce that

1w il < < (1/2)" + 25C (k) (1/2)"

is valid for any positive integer n > 2k. Thus for a given 6 > 0 we can
choose k so that for all n large enough we have

||§n.k”f < |u| < 6-

Together with (2.3) this proves statement (i). |}

Proof of Theorem 1.1(ii). Assume that
Il < 1

for all j > j, and set A, := max(1,max;_, In;|). Let 7 be a fixed positive
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number. Then for {, , as defined in (2.4) we have

n—j, n
1w allzer < X b, jle™+ X (b, le"
J=k+1 j=n—jy+1

"
<C e kT 4+ (/\())(fu*”fn/z Z e '™ .

J=n—jy+1

where C is a constant independent of & and n. From here, statement (ii)
follows easily. |

3. PRELIMINARIES FOR THE PROOF OF THEOREM 1.2

In this section we state several lemmas that will be needed in the proof
of Theorem 1.2. Since some of the new lemmas are quite technical, we
relegate their proofs to the Appendix.

Lemma 3.1 (Lubinsky [1]). Let f(z) = £7_,a,z’ be a formal power
series, with a; # 0 for j large enough.
If (1.2) holds for a number n that is not a root of unity, then

m~—1

lim D(n,m)/a” = TT(1 —n")""
n-—x j:l
and
hj;n Qn,m(uan/an+]) = Bm(u)’
locally uniformly in C.

Assume that m; = a,-ﬂaj_l/al-2 has the asymptotic expansion (1.6) with
c,#0and n=1.Then form = 1,2,..., we hare asn - «

m—1 1’ 1
D(n,m) = a™(—c /)™= T jm~ - {1 N a( nm) + 0(_)}.

j=1 n

Let p € N be a fixed number and the function f be defined for x > p.
We introduce the operator

vrf(x) = Y. (p)(—l)kf(x—k)

k=0 k

640/79/3-4
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with V'f(x) := f(x). Obviously,
Vrf(x) = V(V21f(x)) = P27 f(x) = V77 f(x = 1),

Lemma 3.2, For each p € N, there holds

1

Pr(fe)(x) = ¥ (Z)V*f(xw"kg(x )
k=01
s (Z)vkg(x)w*f(x - k). (3.1)
k=0

Further, if f"Xx) exists, then

Vef(x) = f17(€,), (3.2)

for some &, € (x — p, x).

The relations €3.1) and (3.2) are well-known facts from the theory of
numerical methods (see, for example, [8]). From this lemma, it follows that

p Pk poky= o =k p
iy = L X - z (k )V"f(x)
k=0 k>—0 k=0 !
p—E Tk

{ i~1 {
X]—[F"'f(x— Zk,)( /)wu "‘Jf(x— Zk,).
i=2 j=1 J=1

(3.3)

k

I

LemmA 3.3, Assume that m, is of the form (1.6) with n = 1 and ¢, + 0.
Let N be a fixed positive integer.

(a) Then for each j < n/(N + 1) we have

J N
TIny= 14 L ()/n + My, (jun), 1 ==, (34)
=1

s =

where %, s = 1,..., N — 1, are polynomials that do not depend on n but
only on the coefficients ¢, s = 1,..., N — 1; the degree of each P, does not
exceed s; there is a constant C(N + 1) that depends only on N and c,
s=1,..., N, such that

AN UMy (on)] < CUN + 1)V (3.5)
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(b) For any positive integer p and forj < (n — p)/(N + 1 + 2p) there
holds

AN P terM, (Gon)| < C(N + 1,p)jiN*',  asn — =, (3.6)

where C,{N + 1, p) is a constant that does not depend on j and n.
From Lemma 3.3, we obtain

Lemma 3.4, Let!, p, N € N be fixed. Then, forj <(n —p)/(N + 2p)
we hate

n¥rrvr My (Gon) /') < Gl p NY <Y o,

where C(l, p, N) is a suitable positive constant.
Lemma 3.5. Let p, N € N be fixed. Then, for j <(n —p)/(N + 2p)
there holds
|nN W (n - My(jon))| < C(p, N) -, n - =

We also need the following.

Lemma 3.6. Let p, N € N be fixed. Then, for j <{(n —-1—-p)/(N +
2(p + 1)) we have

NP M (G, m)| < Cs(p, N)JY,

Remark 1. Lemma 3.3 may be applied to any product I'l}_,n,_, for
0 </, <j and j sufficiently “small.” Indeed,

J j+1=1ly

Hnn—l = [Ijl] n(n~l(,+l)—l’

I=1,
and so Lemma 3.3 applies on replacing n by n —1/,+ 1 and j by
it 11,

In the special case when [, = 0, we obtain for n sufficiently large and
for j+ 1 <(n+ 1)/(N + 1) that

J N
/l_[()m—; =l+c(j+D)/m+ YL+ D& () + 1)/ (n+1)
= s=2

+ My, (j+ Ln+1).
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We rewrite the last equality as
j N
In =1+ G+ DE /0 + FyGin). ()
= s=1

Arguing as in the proof of Lemma 3.3, we easily establish that deg &, < s;
moreover, for j + 1 < (n + 1)/(N + 1) there holds

[n¥* Ly () <iVTICIN + 1), n o ey (3.8)
andforj+ 1 <(n+1—-p)/(N+ 1+ 2p)we have
|nN g Gom)| <N C(p N+ 1), ns o (3.9)
We notice that
@y(J) =c, and @\(j) = (Jei +Jc, + 2¢;) /2. (3.10)
Lemma 3.7.  Let n and m be fixed positive integers. Then there holds ( for
D(n,m) #0)

D(n+1,m+ 1) -z"m!

D(”’m) ’ Qn.m(z) ’ Qn,n1+l(z) )
(3.11)

m

7Tn,m+l(z) - 'TT”_m(Z) = (_1)

4. PROOF oF THEOREM 1.2
Let m be a fixed positive integer. We recall that D(n, m) = (a, ,;_ )", _,
is the Toeplitz determinant of order m. We shall assume that D(n, m) # 0
for each n € N. We set

443

Qn,m(z) = Z qk.n,mzm_k’ (41)

k=0

where g, , ,, is given by the expression

~ (_ l)mfk
qk,n,m D(n,m)

a, T Ayvk—1 Ay i+ T Ay im

anfmw&l an~m+k an-m*rk+2 an+|

(notice that q,, ,, ,, = 1).
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It is known (see [4]) that

P, ,.(z) =D(n,m)"

a, e an+/\' an+m
X a, _m+1 Ay vk +1 a, 1
n n n
J J /
Z aj—mz Z aj7m+kz Zajz
Jj=m J=m- k j=0

In view of (4.1) we may write

m n
Pn.m(z) = Z qk.n.m{ Z aj—m+kzj}'

k=0 j=m—k

This yields

m
Pn,m(z) = Z qk.n,mzm_ksn—n1+k(Z)
k=0

m—|

= sn(Z)Qn.m(z) - Z qk.n.mzm_k[sn(z) —Sn—m+k(z)}'

k=0

From this, we get

Rn,m(u) = {Pn,m(uan/an+l)}/{D(n"n + 1)(uan/an+l)”/D(n"")}
_ Sn(uan/arH»l)

- an( uan/an+))"

anD(n,m) m-—1

- m—k
P R 2' 7 ua./a
D(n,m+ 1) 7, konm( U, /8y )

< (S" - sn—m+k)(uan/an-+-l) }
X .

n
an( uan/an + l)

)Qn,m(uan/an+l)anD(n"n)/D("’m + 1)

Now by (2.2), we may write

Rn,m(“) = {Zn(u)Qn,rn(ualx/an+I)anD("”n)/D(n’”1 + 1)}*’
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where { - - - }* denotes the sum of terms with nonpositive powers of u in
{---}. Applying (2.2) and (4.1), we obtain the formula

Rn,m(“) = 1 + Z (bu,,/'/“j)An.j.m* (42)

j=1

where b, ; is given by (2.4), and

a,D(n,m) i a, \* X , / \
D( nom + l) d,, k,n, m a H My & Ji I_I T vi i
: =1

Lt ntl =1
p . forj=1,....,n—m
nojom n=j j+s
a,D(n,m)
5
D(Il,’n + l) nnu 1] \H'qm \.H‘Ill(all/all4|) .

s=0r=1

forj=n—-—m+1,..., n

(weset [TF | -+ =1for k = 0).
1t is known (see [3, 4]) that for ecach m € N

Qn.m(z) = Qn,mfl(z) - an—rl‘mfI(Z)Ij(n"n)‘

where
D(n,my = (D(n—1,m - 1)D(n + 1,m)} /{D(n,m — 1)D(n, m))}.
From this, we obtain

qm—k.n.m

qm‘k—l,n,m~l - D(n’m)quk.n~l.mfl' f0r l < k =m - l

_q(\,n—l.nrf!D(n”n) for k = m.

Using these formulas, (4.3), and also the equality a,7, /a,, .,

= anfl/an'
we obtain for j <n —m

Ay som = (Dn.m)/(D(n,m + 1)D(n,m — 1))}4

n,jom—1

—{D(n+1,m)D(n - 1,m)/(D(n,m + 1)D(n,m — 1))}

J
XAn——l,j.mfl];[lnn~l‘ (44)
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Now let m be a fixed positive integer. We shall prove that for any
positive integer N and for every j < n/(N + 3m — 1) the following ex-
pansion is valid as n — x,

An,j.m N {]._I(] + I)>/m|+ Z m, \(j)/ns + '(;TN.m(j’n)’ (45)

s=1

where T, . are polynomials of degree <m +s,s=1,...,N — 1, and

nes

N +m

!n F m(/,n)) <c(m,N)J n— o (4.6)

wnh the constant ¢(m, N) not depending on j or n. (We set T, . := 0 for
= 1.) Also, forany p € Nandforj <n/(N+m+1+2p+m~ 1)

we shall prove that
|n¥ 0w (Fy (o)) < e(m Nop) N, n s w (47)

for a suitable positive constant ¢(m, N, p), where V” is defined in Sec-
tion 3. Furthermore we will prove that

lA | < cy(m)yn™*!, n—x (4.8)

n.j.m

for j = n/3m.
From (4.5) and (4.6), for N = 1 and j < n/3m, it follows that

An.j.m = {I—I(j+i)}/m!+‘?14m(j’n)’ n — w0, (49)
i=1

where
l”jlm(J n)| < c(m)jm! (4.10)

(here ¢ (m) = c(m, D).

The proofs of (4.5)-(4.8) are given in the Appendix.

Now we are in the position to prove Theorem 1.2. The proof repeats the
ideas of the proof of Theorem 1.1, For any fixed j € N, we obtain that

m

Ay jomba *-*l_I(J+1) as n — . (4.11)

m! L

Let & be an arbitrary positive number and k be a positive Integer. From
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(4.2), we may write

n/3m—1

k
. >~ 0J —3j
n,m“]ul>v" < 1 + Z An,/.mbu,j(‘ + Z An.j.mbn-je
j=1 J=k+1

IR

n

*h —
+ Z An J. mbn J ! l + gn m. ok + gn n, K + Cn m. k-
j=n/3m

We shall now estimate the last two terms.
Using (4.9), (4.10), and the fact that |b, | <
C, is a suitable constant, we establish that

C, for all n and j, where

{I,l,ln,/\‘ = Cekﬁk/z» k > k“. (412)
From (4.8) we obtain that
gl’l’,!n.k :0(1/'1)’ n — %,

Combining this last result, (4.11), and (4.12), and using the fact that & is
arbitrary, we conclude that

Runti) =14 T (TG0 (4.13)

j=1

uniformly inside C\ {u: |u| < 1}.
It is not difficult to show that for |lu| > 1

um+1

(1 omo 1
1+ ) {m—!il—[l(]+l)};_ —‘—"‘(u_ e

j=1

i

x m 1 um+l x
Z{fﬂ(f+,-)}? — E{I—[(J“)} T

j=0 \i=1

Il

mum+l o 1 (m)
(0" ¥ ()

j=0
LumTh o w v
= (-1 ) (u u —1)
(=D """ (-1)"m! umt!

m! (u_l)tn+l - (u_l)m+l'
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If m = 0, then

umt! u 1 1
TR z”'(‘)‘
u—1) u 1/u u

This proves Theorem 1.2. |

5. ProoF ofF THEOREM 1.4

Let m € N be fixed. Recall that

Rn,m(u) = 1 + Z An.j,mbn.juijv
j=1

where the behavior of A4, ;, as n — « is described by (4.8)-(4.10) and
b, J=1,...,n, are given from (2.4) by the formula

j
_ !
bn,j = [I_Inn—j+1'
=1

Hereafter, we shall write R, ,, = R,.
Let ¢ be a fixed positive number, £ < 1, and determine n, from (A.1) of
the Appendix. We shall use in our further considerations the notation

M, =1-2d,/n+o(l/n) =1-2d,/n+ c,/n* + o(1/n*), (5.1)

where d, = —c,;/2 > 0. In accordance with the previous notations
lo(1/n)| < e and n*lo(1/n?)| < C'(1) for an appropriate positive constant
C’(1) (see (A.2)). With respect to the conditions of the theorem, we shall
assume that

I, <1 —-d,/n (5.2)

for n > n'(> n)).

Suppose the statement of Theorem 1.4 is not true. Then there exists a
disk % containing u = 1 such that R, (u) # 0 for every u € % and for n
sufficiently large (n > n” > n’). Assuming that the radius of % is less than
1, we fix a simply connected domain 7, 7 C % U {u: |lu| > 1} with 1,= €
7. Let X,, n > n' be the regular branch in % of the function R (u)'/",
determined by the condition R, ()'/" = 1. The functions X, (u) are
holomorphic (analytic and single-valued) in 2 and, as it is easy to
establish (see, for example, [9]), uniform!y bounded there. Hence {X,)
forms a normal family in 2. On the other hand, Theorem 1.2 implies that
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X (u) = 1 as n — « locally uniformly inside {u: |u| > 1}. Thus, by the
theorem of uniqueness for holomorphic functions

X, (u) — 1, as n — oo, (5.3)

locally uniformly throughout 7.
Now select a positive number 8, such that 4 = ¢ ** € % and consider

R”(e*Z?i) = 1 + { Z Au,j,mbn,jezaj}
J-1

for 6 < 8,.

We shall show that for each & sufficiently small Re{R, (e~ 2%)} increases
as n — o with a speed > e“*", where c is a suitable positive constant.
This contradicts (5.3).

It follows from (1.6) that there exists a positive integer n,, n, > »n" such
that for n > n, the inequality

I, < In,.l (5.4)

holds. Indeed, from the inequality 2d, > 0 it easily follows that

2d, A 1
Innlzl_—_+—?+0(—2),
n n- n

which yields (5.4).
Further, we assume also that for n > n, the following inequalities are
satisfied:

(n/d))|log(1 — d\/m)| = 1 &, (5.5)
and
lImn,| < (1) - Ren,/n’ (5.6)

for a suitable positive constant #(1). With respect to (4.10) and (4.8) we
may assume also that for n > n,

|’7l,m(j’n)| SCl(rn)jm-*-l/n (57)
for j <n/3m and

|A | < c,(m)n™*! (5.8)

n.jom

for j = n/3m. We assume, also, without loss of generality, that ¢,(m) > 1.
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Now, using (5.4) and (5.2), we get
b, ;| < | 0, P9V < (1 = d, ) (5.9)
forj<n—-—n,+ 1and
b, ;| < I | T D21 — g gyt (5.10)

for j > n —ny + 1; here ) = max, , In,l.
Now set 8, = mm{8(,,d(1 e)/{om! (c,(m) + 1)}}. We introduce the
functions

e\(8) = w(){63/(d\(1 —)) =1} 7,
02(8) = (9,(8)/2)(6/d,(1 — £))".
Select the positive number 8, 8 < §,, such that
8%,(8) <172 and 1/m!— 6¢c,(m)d/(d,(1 — €)) > 8%,(8)(> 0)

and the number 8/d (1 — &) is irrational.
Without loss of generality, in our further considerations we shall assume
for n > n,, that the following additional inequalities are fulfilled:

Rem,>1-(2d, + 8)/n >0 (5.11)
and
n - log{l — (2d, + &) /{n{1 — 68/d,(1 — &)} + 2}}
> —2(d, +8)/{1 — 68/(d(1 — ¢))}. (5.12)

Now, we easily obtain that for n > n, and for every positive number j,
satisfying the inequalities (6n8)/(d (1 — €)) ~ 1 <j <n — n, + 1, there
holds

b e, (5.13)

AL
Indeed, from (5.5) we obtain

(j+ D|log(1 —d,/n)|/2 = 36
and hence

(1 _dl/n)(j+l)/2 S€735.

Combining this inequality and (5.9), we obtain (5.13).
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Further, from (4.9), (5.13), (5.7), and (5.8) we see that

%

< c*(m)nmt! Y e’ < ®(2),
J=6dn/d(1-+¢)

n—ny
285
Z An,j,mbn,je

j=68n/d (1 —¢)

(5.14)

where ¢*(m) = max(c(m), c,(m)) and #(2) is a suitable constant.
On the other hand, in light of (4.10) and (5.10) we may write

n

28)
Z An,j.mbn.je

J=n—ny+1

< c**¥(mynm*! i (1= d /)y T inmmdn = D72 28
J=n-—ny+]1

where

c**(m) = C7(m)|,q* |"<|("n+l)/7—
2 ngy

Therefore, there holds for » sufficiently large

n

Y A, b, €| <#(3). (5.15)

n.j.m<n, ]
Jj=n—ny+1

Now let j < 68n/{d,(1 — )} — 1. In view of (4.10) and of the choice of
8, there holds

| F1mdm) [ < &(4)8)™,
where #(4) = ¢,(m)6/(d (1 — ¢)). Hence

lIm A4, .| < #(4)8". (5.16)

n,j,m
and

n

Re 4, ., >j"{1/m!— &(4)8} + {Z(}+l) - }/m!. (5.17)

Denote by () the polynomial on the right-hand side in the last inequal-
ity. In virtue of the choice of 8, it follows that the degree of 2(j) is
exactly m and all its coefficients are positive. Therefore we may write, for
1 <j<6dn{d(l —e)}—1

Re A =P(j) > 0. (5.18)

n,j.m =
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Now, consider

i

bnvj/ 1_-[ {Re nn—j+l}l =

I=1

{1 + l(Im 7')”_j+1)/(Re 77,,4,«/)}/

-~

1

~
I

= 1—:[ {1 + I‘Ln—j+l}l’

=1

~

~

where
I‘Ln—j+l = I(lm nnfjﬁ»[)/(Re nnj+l)'

From (5.6), we get for j < 68n/{d(1 — &)} — 1, for I = 1,...,j and for
n>ny 2 n,/{1 - 68/(d(1 - €))

b il < 7(5) /2, (5.19)

where (5) = ¢ (8) = #(1{68/(d (1 —¢)) — 1}~
Set
! !
xp=p, ol =1,...] and F(x,...,x;) :=[ l(1+x,).

By the choice of j and #n, (5.19) implies that

;
|F(xy,....x;) = 1] | ¥ F(0,...,0)x,
(=1

#(5) (j+ 1)

nZ

j < ©(6)82,

<

J
2 I,
1=1

where

2

ey O 6 Co®)
O == aa-o) =

The choice of 8 implies

i

!
1—[(1 +/“Ln—j+l) - 1

=1

< ¢2(8)8%; (5.20)

thus we obtain

< ¢,(8)8°

j
Re<bn,1/!]:I]{Re T]tlAjﬂ‘/}l - 1}
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and also

< @,(8)8°.

J
i
‘ Im{bn, f/ ,1_[1 [RC nn"] 1'/} - l}
Consequently,

!
(1~ ¢x(8)8°)[T{Rem, _,+,}[ Re b

=1

IA

n.f

s£UanmH1+%mn(5m)

and
! !
“m bn.j' S‘P.’,((S)(SZI—[{}{C T’n~j+l}‘ (522)
-1

On the other hand, the choice of § and (5.11) yields

J
l_[ {RC 77:. - +/}I

I=1

i+ 2

> (1 = (2d, + 8)/{n{l — 65/d(1 - &)} + 2}} > 0. (5.23)
Finally, from (5.18), (5.21), (5.16), and (5.22) we obtain

Re A Reb, ,—Im A4

n.j.om

Imb, |

n,j.om

= Q(I),].] [RC T]”,j+/}/

> Q{1 - (2d, +8)/{n{1 - 68/d,(1 — &)} + 2J)" 1,
(5.24)

where, in view of (5.17),

Q(J) = (1 = #x(8)8)2(j) — #(4)¢x(8)8%"
1 c(m)6d

=gy _ - 7552 4 -
M T a0 e e

The choice of § ensures that the degree of the polynomial Q(j) is exactly
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m and all its coefficients are positive. Combining this result and (5.11) we
obtain
Re A

Reb, ; ~1Im A, Imb, >0, (5.25)

n.jom n.j.m n,j

Select a positive number « such that o < 28 and set k .= (26 — aX1 —
65/d,(1 — )} /(d, + 8). Consider

[kn]—1
.,Q/(a, n, Cl) = Re Z An,]’,mb
=1

25§
Hv]'e .

It is easy to establish that for j < kn — 1 the inequality

J

[T{Ren, .} > etV (5.26)
i=1

is valid. Indeed, from the choice of x we get

—{(j + V)y/2n}{2(d, + 8) /{1 — 68/d\(1 — €)}} + 28 > a.
Applying (5.12) we see that for n sufficiently large
{(j+1)/2}log{1 — (2d, + 8) /{n(1 — 65/d\(1 — &) +2}} + 256> a.

Inequality (5.26) now follows from (5.23) and from the fact that n > nj,.
Combining now (5.14), (5.15), (5.24), and (5.26) we get

Re R, (e %) > e™"minQ(j)#(7),
>0

for some positive constant %(7). Consequently, lim X, {exp(—25)} >
exp{akx} > 1 for any & sufficiently small. This contradicts (5.3). Hence,
Theorem 1.4 is proved. |

6. PrRooF oF THEOREM 1.6

Let

ua "
IIn,m(u) = Trn.m( - )/(an( ua'r/ar1+l) )
a

n+1
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From Lemma 3.7, we obtain

rIn.nH»l(“) - [[n.m(u) =

(_l)m D(H+ 1’m+ 1) ua” )m+l
D(n,m) (
1
X .
Qn.m(uan/an+I)Qn,m+ I(uall/a'z+l)

a a

n n+1

Now utilizing Lemma 3.1 we see that except at the zeros of B,,, B,, .,
there holds

. (_ 1)'"um+l m

llm {IIll.m+l(“) - [Irl,m(u)} = T o N n (1 - ”71) (61)

n—ox Bl?l(ll)Bln‘Fl(u) J=1

(we set T2 (1 — ') = 1 for m = 0). We remark that (6.1) is also valid in
the case when % is a root of unity, but n,...,n" # L.
On writing (recall (2.2))

m—1

Hn,m(u) - Zn(“) = Z (Illl,k+l - IIn,k)(u)’
k=0

we obtain (1.9) from (6.1). |

Proof of Corollary 1.7. This follows immediately on multiplying (1.9) by
Q, nua,/a, ) and applying Lemma 3.1 and Theorem 1.1. |

APPENDIX

Proof of Lemma 3.3. Let £ be an arbitrary positive number. By (1.6),
for any integer s > 0, there is a positive integer n, such that

In, —1—ci/n—cy/n® = —c/n| <e/n’ (A.1)

for every n = n,; we assume that n, <n, < --- < n, Obviously there

exists, for s > 0, a nonnegative constant C'(s) such that for n > n,
n*ln, - 1—c/n— - —c./nl <C(s). (A.2)

(C'(s) > 0,if ¢,,, # 0;if ¢c,,, = 0, then we set C'(s) := ¢.)
For z # 0, let log z be the principal logarithmic function, i.e., log z =
Inlzl +i{Arg z, —m < Arg z < 7. Then, for {w| < 1, there holds

log(1 + w) = }E (- )" 'wh k.
k=1
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Before proving Lemma 3.3, we shall first show that for each N and
J <n/(N + 1) there holds

J J N
IOg[I—IInn~I = Z lOg Nn-1= ij.VAl(j)/"y +'/lN+I(j! ”)* (A3)
- I=1 =1

where p,_, are polynomials of degrece not exceeding s — 1,5 = 1,...,
N — I, which depend onlyon ¢, i = 1,..., N;

Hy(j,n) =My (), n) +!.PN—|U)/"N (A4
and
|nN* (o) <o (N + 1NN asn - x, (A5)

where ¢,(N + 1) is a constant that depends on N.
Indeed, let j < n/(N + 1). For n > 2n, ., we may write

J N J

J
Z logn, , = Z Z(l"/(n — [)" +dy,, Z L/(n — [)N+l

I~ I=1s=1 =1

+ Zo(l/(n - I)NH)

-1

(obviously, d, = ¢,). We rewrite the last equation in the form

J N
Ylogn, ;= X q(j)/n* + Ay, (i, n), (A.6)
=1 s=1
where
J N £ .
Ao = T Xdme ¥ (=tmH ]
I=1ys=1 k=N—-s+1
J J
+dyy Y. 1/(n —1)N+I + Zo(l/(n - I)NH) (A7)
=1 I=1
and

a,(Jj) = :Z:]d.\_k( ‘Sk+ k)( _ 1yt i "

1=

We see that for each s, s <N, ¢,(j) is a polynomial of degree not
exceeding s, since, as it is known, for each fixed nonnegative integer k the

640;79/3-5
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sum q(k,j):=¥j_,/* is a polynomial of degree exactly k& + 1 and
glk,j)=j-q'(k,j), where g'(k,j) is a polynomial of degree k. There-
fore, g, may be written in the form g (j) =j - p,_(j), where deg p,_, < 's
— 1. We notice also that g (j) depends only on d,, ..., d,. This, as well as
the construction of .#,,, (j, n) prove (A.3) and (A.4). Also observe that
Py = €y

Let us now consider nV* !, (j,n)forn > 2ny,  and j < n/(N + 1).
From (A.1) we get

.n“VHJ‘/NH(J.,n)‘ <jre (et ldyl) +.2, (A.8)

where

LessNo oy y= k=N+1-s

j N x k 1
¥ < maxv|d‘fz ZnN'+I.\{ Z (S+k~ )(l/n)k>

N
<j maxmld\.l YN s - DY)
l<s<N s =1

%

Y (K +NY(k+N+1 =531 (i/mF.

k=0
It is easy to check that for j < n/(N + 1) the incquality
L < CP(N + 1N

holds, where C{*(N + 1) is a positive constant. Combining this result and
(A.8), we get (A.5).

We now turn to the proof of the lemma. Let N € N and ¢ be fixed,
n>2ny,,, and j <n/(N + 1). For T1{_m,_, we have

N=k+1 k

J N
[In, ., =1+ )% (l/k!){ 2 P a()/n Ay (Jsn)
k=1

=1 s=1

w ) K
k=N+1 =1
We rewrite [T/, _, in the form

i N
[l_[lnnf[ =1+ Z_]-@s,d})/”l‘ + MN+L(jsn)’

s=1
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where M, (j, n) is given by

My (. n)

N

N-k k
=#y.(J, 1)+ { Z (1/k!) - ( Zj'l),.(l')/n"') }
(—N- 1}

s=1

»

N

-1 N—k+1
): l/k')Z( )( 2 J"P.u(j)/n")

= r=0

'(~’7N—k+z(]',"))k-r

+ Y (17K - (cyi/n +. 405, n)) (A.9)
k=N+1
and
("')(—N—1>:=;1“,:,—+T+;TV-‘I'5+
Since deg p,_, <s — 1, s = 1,..., N, it follows that .2 _ () are polyno-

mials of degree < s — 1, respectively.
We consider n™*'M,, (j,n) as n— = and j<n/(N+ 1). For
n™*l#, ., (j,n) we apply (A.5). Denote the last sum in (A.9) by B,. In

view of (A.5), we may write
lc,j/n +/lz(]',”)‘ < le\lj/n + ¢e(2)j2/n* < (j/n)CP,
so that

)N+1 i (l/k!)(jC(lD/n)k_Nfl

k=N+1

<jVTICPO(N + 1). (A.10)

|nN+lBN| SI—N+I(C€2)

Now we set

N—k+1
Z(l/k')Z( )( Y. J-p )/

r=0Q s=1

Ay r(s ”))
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and consider n™*'4 . For each r = 0,..., k — 1, we casily obtain that
N-k+1 "

o)/

y=1

N—k+1

. r . -1 I\
= (J/n) )» oo T ApeiGy/me ')
LR S O i1
O<l <r
where Wy, are the corresponding cocflicients, so that we may write
Vo t
N-—k+1

Yooiop j)/n‘) < C(N+ j/n".

|

From herc and from (A.5) we get

N k-1 k -
YU <MY (kD T (’)(CI(N—k +2))A-.
k=2

r—0

.(j/n)(N—fk+2)(k—r)+r((:=4)(N + 1))

N
SCO(N+ 1) N Y (1/kY)
k-2

/\»;
% Zl(j/n)(.‘\f—kilxk rl+Hr=N-—1
r—=40
Finally, we obtain
|nN*'AN1 < C}”(N + 1) 'jNH, (A.11)

since, as is easy to verity, (N —k + 2Xk —r) +r =2 N + 1.
Using an analogous argument, it can be shown that

N

:

& k
J"Pu(}')/nz) < CIP(N + )N
1

(=N--1)

N
nN*'{ Y (1/kY) (
k-2

Combining this result, (A.10), (A.11), and (A.5), we obtain (3.5).
Hereafter we shall write M, instead of M, , and shall prove (3.6) for
N> 1
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The proof of (3.6) is based on properties of V(1 /n”), m, p € N, n > p.
Set

1
=l —]|.
¢I".[’(n) ( ’1,71 )
From (3.2) it follows that

ld),,,\l,(n)} sm(m+1)---(m+p-1)/(n —p)"”". (A.12)

Now, from (A.7) we have

f %

Viay(ion)y =Y Ld, ¥ (‘k‘)v"(l/n*‘“’)(—l)"
s =N

205 (s

+ L V(l/(n =D} =1 + 1, + 1. (A13)

Let & be a positive constant, n — p > 2n,, . and j <(n ~ p)/(N +
2p). Applying (A.12), we obtain for I,

N-1
It <j- max ld| Y Y j*

l<ss<sN-—1 s=1 k=N-—s
(s+k-1! Ys4p
k'(s 0! {r!)(k—%ert)}/(n—p)k

l<s<N-—1

<j- max |d| Z {i/(n ——p)}Nf""{l/(n -p)'""
s=1

(k+s+p-1!
k' (s —1)!

Y {i/n-p)tT
=N

-5

k

Arguing as in the proof of (A.5), we establish that

kones (K Es+p—1)!

k;%s{j/(n—p)}_ arryrey < ("N, p)

fors =1,..., N — 1. Consequently

(1| <& (N, p) - j¥/(n = p)¥™7. (A.14)
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In the same way we get (for j < (n — p)/(N + 2p))
I, < ¢P(N,p)-j/(n —p)NH“’. (A.15)
For I, we have, from (A.2) (for n ~ p > 2ny, )

Wl < T Z()PWWAn—/—m””}

k=01=1
{tn =1 =K)"""o(1/(n =1 - k)"
< ejel™(N, p).
Combining this result, (A.14), and (A.15), we get from (A.13)
|nN Ve (Gony| <N P(N,p),  n o (A.16)

for j < (n — p)/(N + 2p) and a constant ¢'"(N, p) that does not depend
on j and n. Finally, using (A.9) and (A.12) for 1,2,..., N, (3.3), and the
fact that deg p, < s, we arrive at (3.6). |

Proof of Lemma 3.6. We have
P

VAnVMy(j,m)) = 3 (- 1)"(2)(;1 - k)YMy(j,n — k)

k=0

—nZ(—l) ( )V'M,V(j n— k)

k=0

p—1
p T 07 e -1 -0

k=0
=nV’*" "M (j,n) —pV’My(j,n — 1),
so that
IIINH}VP{HVMN(Ln)}’ _ IINHHIVIH"MN(]',H)
—pnNPYPM (o — 1),

Thus Lemma 3.3 furnishes the desired estimate for j <(n — 1 - p)/N +
2p+ 1) 1

Proof of Lemma 3.8. By definition,

f(Z)Qn me1(Z2) = P, mat(2) =, "H_l~z”+’"+7-+
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and

f(Z)Qn.m(z) - PH.IN(Z) = a".m 'Z'H>m+f + e,

From these relations, we get

(Qn.m : Pn.m+l - Qn.m+( . Pan)(z) =&, o Z”+m+l'

Utilizing (1.5) we determine that

m

Xyom = (—1) D(" + l,m + 1)/D(n,m),

and (3.11) follows. |}

Proofs of (4.5)-(4.8). We shall establish the statements (4.5)-(4.8) by
induction on m. Consider first the case when m = 1. Let ¢ be a positive
number, N € N, N > 2, be fixed. From (1.6) we have

N
—c/{n(1 =)} =1+ X g/n +o(l/n™), n-= (Al7)
i=1
where

g1 = —cy/c. (A.18)

Thus for n sufficiently large, say n > n,. there holds

<E.

i=1

N
IIN<C]/I1(1 -n,)+ 1+ Zg,-/n'}

We assume hereafter that n > 2n,,.
For m = 1 and j < n — 1, we have from (4.3)

i
An.j.l = (l - ]—(I)nnvi)/(l - T’n)'

From (4.11) and Remark 1 of Section 3 we obtain for N > 2

N-1
A, =i+ 1+ X T, (j)/n+Fx(j.n), (A.19)

s=1
where, in view of (4.12),

T, .(J) =i(J+ (1 +¢)/2,

T,y = L G+ De(i)g ., /c.  s=2,...,N=1 (A20)

5, =0
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(g, = 1), and
T(i+ e
Fnalion) =0(1/” {J + 1+ Z (_]—)_‘i_jl ’7-"VN+|/C1}
s 1 on’
N
+nty {7, n){l + ) g,»/n"}/cl
i=1
N N-]
+ Y (g/n) L+ De i)/t (A21)
y=1 s)—-N-y

From this we see that deg T, (j) <s + I,s=1,..., N — 1. In particular,
for N = I, we have

Fialhon)y =+ D(g,/n +o(1/n))

+ nA5( 1, n){l +g,/n+ o(l/n)}/cl.

Now consider n™F,, |(j, n) for j < n/(N + 2). Since for such numbers j
the inequality j + 1 < (n + 1)/(N + 1) holds for every n sufficiently
large, we may apply (3.8) of Remark 1., Combining (A.21) and (A.2), we
obtain for j < n/(N + 2)

[nNFy (Jon)| <e(f + 1 +Cy(2)/n) + C(N + 1)V D0(1)

N-1

N .
+ Ylg " X e

i=1 sy=N-—g

< (1, N)jN*!

for a suitable positive constant ¢(1, N).

Now let p be fixed, p € N, and j <n/(N + 2 + 2p). In this case, we
also have j+ 1 <(n — 1~ p)/(N + 1 + 2p) for n sufficiently large, so
that (3.9), for n > ny, ,, and Lemma 3.6 are applicable with respect to
nN*r - vPn 1y, (j, n)}. Now, using for n > ny., the representation

N+p
o(l/n™) =Y g./n +o(l/nV*7),

s=N

(A.21), and Lemmas 3.2, 3.4, and 3.5, we get inequality (4.7) for m = 1.
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Now consider A4, ;| for j = in/3 and for n > 3n,. For j <n — 1 we
may write from (4.3) that

J
|An,j.l| 2’—1 + nnnl‘/ll - nn|

=0

i—-1

J
I+ Z (1 - T’u*i)kljl()nnfi+k/(l - T’n)

i=1]

n—ny,

<1+ Z {((" - I)/n)“ - nn—i']/{“ - nnl((” _i)/")}

i=1
+ X {((n=d/mit =, 31 = m,0((n = i) /m)}.

i=n—n;+1

Now, from (A.2) of the Appendix, we get

1+ c'(0) n(n = ngy) n maxl<ksn,,“ - 77/(*
[n(1 = m,)| n, [n(1 = m,)|
<1+ % (e)n, (A22)

where 2”(¢g) is a constant depending only on &.
Finally, for 4 , We obtain

n.n,

i=1

An,n‘l = (l_[nl[)/(l - T’n)’

and so
|f’n.n.ll < C"(E)l|77«|I"”("“_W2"~

where 7n, = max|n,|, kK <n,, and C"(¢) is a suitable positive constant.
The last inequality and (A.22) yields (4.8). Thus our assertion is proved for
m=1.

Suppose now that our hypothesis is true for L,2,....,m — 1, m > 2;
namely for any N € N, and j < n/(N + 3m — 4)

m—1

An.j.m—l = { n (] + l)}/(m - l)'

i=1

N—1
+ X val,s(j)/nx + 'qN.m—l(j’n)* n—%x,

s=1
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where T, _, (j) are polynomials of degrec not exceceding s + m — 1,5 =

l.....N—1; for any p,p=0 or peN and for j <(n/(N+m+
2(m — 2 + p))), there holds

‘nNH)VI}'Z‘V.mf](j, ’1)| < C(’n -1, N, p)dem— l* n — . (A23)
Suppose also that

[A | <c(m — l)n™, n— x (A.24)

nofom—1

for j > n/(3m — 3), where ¢(m — 1) is a suitable positive constant.
Let € and N € N be fixed. Lemma 3.1 yields, for n sufficiently large
(n > n' = n'(¢)) the representation

D(n,m)z/(D(n,m + 1)D(n,m — 1))
N
= (~n/mc,){l + 0 B /n + 0(1/!1"")}. (A.25)
i=1

We assume also that »' > 2n,, where n, is determined by (A.1).
Applying Sylvester’s identity, we obtain

(D(n+1,mYD(n — 1,m))/(D{n,m + 1)D(n,m — 1))

N
= (*ti/mc',){l + ¥ B /0 + me,/n+ o(l/n‘V)}. (A.26)

i=1

On introducing the notation

N
Fn.m.N = Z B:,m/ni + O(I/I’IN)

i=1
and using (A.25) and (A.26), we can rewrite (4.4) in the form
An‘j, mo ( —n/m(ll )( l + El,lll. N ) An,/.mf i

J
+(n/mcl)(l + Fn,m.N + mcl/n)Anfl,j.m—l l_[lnn—i'
=
From this we obtain for j <n —m

An,j,m = (1 + Fn,/n.N)(n/mCI)(An—l.j‘/n—l - An,j,m—l)

+An—l./.m—l (l + EL»N.N)(”/mCI)(Ij[l(nn—i - 1))

+ Ij‘[]n} (A.27)
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First we observe that for n sufficiently large and j < n/(N + 3m — 1) it
follows from the induction hypothesis that

(l + Fn.m.N)(n/mCl)(An~l.;,m*I _An.j.m—l)
N—1 $

Z }: m~1, s,(-’)Bs—S,,m /ns + j’("m

s=1 1y =1

Z LN/ + F5 . (A.28)

s=1

i

where

m—l s(}) = Z 7—;n‘l.xflc+](j)( -t ’—kk * 1)(_1)/(/”16‘[’

k=1
s=1,...,N—1 (A.29)

and

N ) * —5 k 1+ Fn m
.Z‘(",m = Z {'Tm-*l.s(j)/n-‘A]} Z ( k )(—1/’1) }{ nce, }

s=1 k=N-s+1
T+ F,
“nrv‘?"\/'+l.r714l(j"l) o
1
TG & B
+ Y = Y e (A.30)
s=1 n’ s, =N-3s n mc,

(here B, ,, = 1). Notice that the degree of T)}* _ does not exceed

m-—1+s.
Also, we have for j = n/(N +m + 1 + 2(m — 1)), the inequality

1"N+lv‘y~f\/+l.m—l(j’n)l = C(m - I’N + l)jN+1+mAl/n'

The last inequality easily implies that

N+l
ln ';N.m

<c(m, NNt (A31)
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Furthermore for any p € N, we have
N+ G - _ G Neprlep+lg ;
n pvp(nv‘//\"+l.trl--l(j’n)) =n ! Vi ‘/N+l.mfl(jﬂn)
N+poror S
+pn r‘/N+l.n|vl(j‘”_ 1)

Now using (A.30) and the induction hypothesis, applying Lemma 3.2 to
Fn.mbisn), and keeping in mind that deg 7,,_, , <m — | + s, we obtain

|V rwegFy  (ony| < c"(m, N, p) - jVm (A.32)

Notice that in (A.32), j <n/(N +m + 1+ 2(m — 1+ p)).
Now set By ,(j,n) =0+ F,  Xon/mc)IT/_m,_, — 1)+

n,om,

I1/_,m, _,. By virtue of Lemma 3.3, we may write

N-1
By wlisn) = 1+j/m+ Y 2% (j)/n* + M ,(in), (A33)

s=1

where
N—1 N
M::.m(j’n) =} Z ‘%Ds( j)/n\ Z ﬂ.\,.ln(l/nlcl)
s=0 s;=N—s
+(l/mcl)nMN+l(j’n)(l + Ez.m.N) + MN(j’n)
N1
+o(l/n™)Y(1/me)) Y j2(j)/n* (A.34)
s=1
and

‘@rts(]) =]‘@7!(1) + Z jB.s—.\,,m‘?\](j)(l/mcl)’ § = ]”"’N - l

sy =0

(A.35)

(Here B, ,, = 1 and, as in the previous notation, £ (j) = c,.) Notice that
deg # (j) <s + 1.

Notice also that Lemmas 3.2, 3.5, and the bound (3.6) are applicable to
My (,n) for j <n/(N+ 1) and for j <{n —p)/(N + 1 + 2p)), re-
spectively. From (A.34) we get, for p = 0,1,...,

aNHPEPME  (jon) < jNTie*(m, N, p). (A.36)
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For A4
esis,

By, ,.(j. n)we get from (A.33) and the induction hypoth-

n—t. jom—1t

An*l.}.m-- IBN.m(j’ ”)

e l I" - I \( j ) l\ . l - —s‘ l l\

{II_—I](J“"’)/(NZ—I)MF \E__:I i A§] (k )( ”)
NI 7;)1\I..\(j) = —s l k _ i

! ,s-z;;l ““"7;;—1\_)_;,‘( k )(_;) Tl =)

{ ti/m+ Z S L0y/m' + Mif_.,,(llﬂ)}-

s=1

Introducing polynomials 7,***(j) we can write the above equation in the
form

Anf I.jlmleN,m( jv ”)

m-—1 ':‘:**(I)
{ [+ i/m- 1+ T R

i=1 s—1

+ s n)}

*lu*
X{ L X \(I) +M§_m(j,n)}. (A.37)

s=1

Notice that deg T***(j) <s +m — 1.

4]

Obviously, inequality (A.23) with respect to %, . (j,n — 1) holds for
Jj<n/IN+m+1+2m—-14+p), p=0,1,..., and for n sufficiently
large. From (A.27), (A.28), and (A.37), we finally get

m N-1
n j.m = I_I(] + l)/n1’+ Z m., \(j)/n“ + ‘Z\",m(-’.‘n)’

s=1

where

m—1

L,.,(J) = _]:[l(j+')9‘ﬁ7? L) /(m = 1! (A.38)

+ X T (D P (D) + TG,

sy=1
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s=1...,N—1,and

7~'.m( j’ n) = ’}‘/\y/‘.m(-j’ n)
+ '?\f,mfl(j*n - ])

N-1
{1+j/’n+ Z m, ‘(j)/ll +MN m(j’n)}

m—1

+ My ,,(Jln){ ITG+D/(m= 1+ Z T /)/'1“}

i=1 s=1
N-1 N—1

+ AT/t X2 (/e (A.39)

=1 s 1=N-—3s

Obviously, the polynomials 7,, (j) do not depend on j and n and
deg T, (j) <m +s. Also, taking j <n/(N+m+ 1+ 2m — 1+ p)),
=0,1,..., using (A.31), (A.32), (A.36), and the fact that deg T, <

m-1ls =
s +m — 1, we obtain the required inequalities (4.6) and (4.7) for suitable
constants ¢(N, m) and c(N, m, p).

Next we consider the behavior of A, ., for j > n/3m as n — . For
n—m>jz=n/3m — 3), (4.8) follows from the induction hypothesis
(A.24) and from (A.27). For n/3m <j <n/(3m — 3) we usc (A.27),
(A.24), (A.23) for p = 0 and the induction hypothesis. And finally, for
j > n — m, (4.8) follows from (4.3). Thus, we have shown that the induc-
tion hypothesis is true. §
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