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For entire functions f(z) = Lj~oajzj whose coefficients satisfy the smoothness
condition a j + Iaj_ I/a} -> 1) as j -> ex we investigate the asymptotic behavior as
n -> ex of the normalized partial sums s"(za,,/a,, + 1) and the normalized Padc
numerators Pn. m( za"/a,, + I)' m fixed. As a consequence we deduce results on the
limiting hehavior of the zeros of these polynomials. IYY4 Academic Pre". Inc.

1. INTRODUCTION AND MAIN RESULTS

Let

j(z) = Lajz 1

j~1l

be an entire function in the complex plane C with a1 oF () for all j (j E: N)
sufficiently large, We set

The basic assumption throughout the present work is that

( 1.1)

as j --> 00, ( 1.2)

which we call the Lubinsky smoothness condition (see [1 D.
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The function
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H7)(z),- L 7]j(j+1l!2 Z i

j~()

plays an important role in our investigation. It is clear that for hi < I,
H 7)( z) is an entire function. If 17] I = I, then H 7) is holomorphic in the unit
disk; in the case when Iry I > I, the radius of convergence is zero. We
notice that H7)( z) = h 7)( 7] z), where h 7)( z) is the partial theta function.

We denote by 5,,(Z) = 5,,(f, z) the nth partial sum of the Maclaurin
expansion for f:

s,,( z)
"L ajz i

.

j.~ ()

Our first result describes the asymptotic behavior of normalized partial
sums.

THEOREM 1.1. Assume that (1.2) holds with (j) 17] 1 < I or (ii) 17] 1
and I1]) ~ I for all j large enough. Then, in case (j),

as n ~ cc locally uniformly in C - {O} and, in case (ii),
I

locally uniformly in {u: lui > I}.

(As usual, "locally uniformly" means uniform convergence in the metric
of Chebyshev on compact subsets')

For each pair (n,m) E N 2
, let TT'".m (= TT'".m(j) be the classical Pade

approximant to the function f of type (n, m). Recall that TT'" m = p/q,
degp .s; n, deg q .s; m, q i= 0, where the polynomials p and q ~re deter
mined by the condition

(fq - p)(z) = O(z,,+m+l) as z ~ O.

It is well known that for each pair (n, m) the function TT'".m exists and is
uniquely determined (see, e.g., [2]). We write

1r",m = P",m/Q",f1l'
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where QII,III(O) = 1 and PII ,III and QII,III do not have a common divisor. Let

D(n,O) := 1,

be the Toeplitz determinant formed from the coefficients of the Maclaurin
expansion for f. It is known (see, e.g., [3,4]) that if m is fixed and f is not
equal to a rational function having at most m poles in C, then D(n, m) *- 0
for an infinite sequence N' <;;; Nand 71"11,111 == 71"k(II),III' where k(n) := max{k:
k s; n, kEN'}. If f is rational with a denominator of degree :oS m, then
TTII , ,n< J) == f for all n E N sufficiently large. Without loss of generality, we
shall assume hereafter that N' = N. In this case there holds (see [2])

(!Qn,m - p".m)(z) = a
ll

,m z "+m+1 +

with a ll ,lII *- 0 and

all

all
-I

QII,Il,( z) = D(n, m)

a,,_m+1 a n - m + 2

an + m - J an + m

a,,+m G,,+m-I

all

zm

Direct calculation also shows that

Zlll-I z
( 1.5)

D(n,m + 1)
P" III ( z) = z" ) +, ,. +d", m'

, D(n, m

The next result supplies information about the behavior of the zeros of
71"II'III(f) as n ---> 00 in the case when the numbers T/" tend to T/ "smoothly
enough"; namely, there exist complex numbers {c)7 with c 1 *- () such that
for each positive integer N > 1,

as j ---> 00. ( 1.6)

This kind of convergence has been introduced and studied by D. S.
Lubinsky in [1].

THEOREM 1.2. Let the entire function f be gil'efl and mEN be fixed.
Assume that a j *- ° for j large enough and that (1.2) holds H.'ith T/ = 1.
Assume further that T/J admits the expansion (1.6) with c 1 *- ° and that



350 KOVACIIEVA AND SAFF

l1]i l ::::: I for all j sufficiently large. Then

P",m( ua"/a,, + I)
R" ",( If) := "

, (ua,,/a,,+d {D(n,m + I)/D(n,m)}
-> ------,-

(u_l)m+1

( 1.7)

as n -> CXJ locally uniformly in {u: 1If 1 > I}.

Notice that for m = 0, we have R",I1I(u) = s)ua,,/a"+I)/
{a,/ua,,/a,, + 1)"} and the conclusion of Theorem 1.2 coincides with the
conclusion of Theorem 1.1 in the special case when 1] = I.

COROLLARY 1.3. With the assumptions of Theorem 1.2, for each fixed
m EO N and any t: > 0, the Pade approximant 7T" 111( z) has no zeros in
Izi > la,,/a,,+ 110 + d for alln large. '

Set

R:= liminfla,,/a,,+,I.
n-----" X

Then, if R < 00, there is an infinite sequence N" c N such that the zeros
of 7T",I11( z), n E N", have all their accumulation points in the closure of
the disk DR = {z: Izl < R}. On the other hand, it has been established in
[I] that 1T",m(Z) -> f(z) locally uniformly inside DR' so that any compact
set in the interior of DR contains not more than finitely many accumula
tion points of the zeros of {7T", '.,}II ~x' Consequently, all the zeros of 7T", "I

with the exception of a finite number tend to aDR = {z: Izi = R} as
n ->00, 11 EO N".

Examples of functions to which Theorem 1.2 may be applied are the
exponential function

f(z) =e= = Lzi/j!
i~O

(see [5]), the Mittag-Lefler function of order A (> 0),

f(z)= LZi/T(I+j/A)
j~O

(see [6]), as well as the function

f(z)= LU!)-I/AZi.
j~O
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The next result provides more precise information concerning the limit
points of the zeros of the sequence {'lT

II
• m( f)} as n -> 00 for a special class

of entire functions f.
THEOREM 1.4. If c I < 0 in (I.6), then for each fixed m 2 0, the point

II = I is a limit point of zeros of the fllnctions {R II. m< II )}~ ~ I in (1.7),

COROLLARY 1.5. Under the conditions of Theorem 1.4, for each fixed
mEN and any E > 0, the Pade approximant 'lT

1I
• /Il( z) has at least one zero

in the annuilis

I all I I all I-- (I - E) < Iz I < -- (I + E)
aliT I a ll + I

for n large.

It follows from Corollary 1.5 that there is a sequence LeN such that at
least one zero of 'lT1I • m( z) tends to z = oc as n -> 00, n E L, and the speed
of the attraction is like lall/a"+II. If liminfll~xla,,/a"+11 =00, then
L = N.

Before we continue, we introduce the polynomials B",( II) = B,n< II, q),

which are defined recursively as follows: B(J(u) = I and for 111 = I, 2, ... ,

( 1.8)

When q is not a root of unity, it can be shown that

m (I - qm){1 _ qm-I) ... (I _ q",+1-1 )

Bm ( -u) = I: ')) u i
;

j~(J (l-q)(l-q" ... (l_ql

furthermore, Bm ( u) = (I - u)"', when q = I.
Details concerning the polynomials B"" 111 = 0, 1,2, ... , can be found

in [7]. These polynomials are of importance in the investigation of the
distribution of the zeros of 'IT,,. '" in the case when the number TJ in (1.2) is
not a root of unity. The following theorem is valid:

THEOREM 1.6. Assume that (1.2) holds for a number TJ that is not a
root of unity. Then, for the Pade approximants 'IT,,. m associated with f there
holds locally uniformly in C \''1lm ,

lim {'lTII . m( ua ,,/a" + I) - s,,( ua ,,/a" + I )} / {a ,,( ua ,,/a" + I )")
n_'X

tntI (- U ) k + In;~ I(I - TJ j )

k~O Bk(u)Bk+l(u)

where .'JiJ", denotes the set of zeros of B I' ... , Bm .

( 1.9)
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COROLLARY 1.7. If condition (0 or (ii) of Theorem 1.1 holds and 1] is
not a root of unity, then for the Pade numerators P".III we hare

for u in the appropriate ref;ion descrihed hy Theorem 1.1.

2. PROOF OF THEOREM 1.1

Since the asymptotic results stated in Section 1 are not affected by the
values of finitely many of the coefficients a j' we assume for simplicity that
a j "* 0 for all j ~ O.

The proof of Theorem 1.1 requires the following simple lemma.

LEMMA 2.1. For each pair of positil'e integers (n, I) such that n - I ~ 0,

( )

-I /
a,,_1 _ a,,+1 n k

- 1]/I+k-I'
a/l a" k~ I

Proof The proof is based on the equality

(2.1 )

-1 -Ian+,a n = 7J"a n a,,_j,

Let n be fixed. It is easy to verify that

i = ± 1.

Therefore, (2.1) is true for I = 1 and I = 2. Now suppose that (2.1) is valid
for I - 1 and I with 3 ~ I < n. We write

a"_I_lla,, = (a,,_I_lla,,_/) . (a/l_Ja/l)

= 1]/I-I(a/l-1la/l- I + 1)( a/l __ Ja/l)

2 -I
= 1]/I-I(a/l- 1la/l) (a/l_I+ Ila/l)

/ 1- I

( ) -2/n 2k n -k ( )/-1
= 1]/1-1 a/l+lla/l 1]/I-I+k 1]/I-I+I+k' a/l+lla/l

k ~ I k ~ I

/

( ) -1-1 2 n k+1
= a/l+ Ila/l 1]/1-11]/1-1+ I 1]/1 -I+k

k~2

which yields (2.1) for I + 1, as required. I
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For the proof of Theorem 1.1 we first set

Zn( U) := Sn( ua,.Ian + I) / {an( ua,.Ian + I ) n}

and apply Lemma 2.1 to obtain

n j

Z,,(U) = 1 + L U- j n Tf,:+s-j'
j~ I s~ I

353

(2.2)

( 2.2)

Denote by Z".k(U) the kth partial sum of Zn(u), kEN. We notice that
for any fixed positive integer k, it follows from 0.2) that

k

Z (u) --> '\' U- j Tf j(j+I)/2
n.~ ~ ,

j~O

as n --> oc, (2.3 )

locally uniformly in C - {O}. Since the limit polynomial in (2.3) is just the
kth partial sum of the Laurent series for H.,P/u) about infinity, the proof
of Theorem 1.1 will follow by estimating the function

n

(n.k(U) := ZJu) - Zn.d u ) = I: bn.Jiu
j
,

j~k+I

where

j

bn • j := n Tf~+s-j'
s = I

(2.4)

Proof of Theorem 1.1(i). Suppose that ITf I < I. Let E be a fixed
positive number, E < 1, and k o be a positive integer such that for all
k ~ k o we have

Tft := sUP/Tftl < 1
t?: k

and

( * )(k + 1)/2 < /2Tfk - E .

Now let n be an integer with n > 2k. We write

(2.5)

n-k+l n

I: bn.j/u i + L bn.Jiu i
=: (,~~~(u) + (,~:~(u).

j~k+I j~n-k+2
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By (2.5), we have for k 2 k ll

kn-k~1 . . . .-k

Il r(1111 «( *)(k+I)/2/,.) " 1.( *)(I+k+I)/2/,)1
~n.k '<;;1"1 - 17k f L... 17k f

i -k + I

n - 2k + 1

$ (1/2)k L (1/2)' $ (1/2)k.
,- 1

For ?(21 we obtain the following estimate for k 2 k(),II,k.

( 2.6)

~ -(j+n-kl(Jn-' I , IJ+nn-kl' I)
$ i":'/" '0 I 17k -f +, '" _j 17k - 1 +,

k
$ L hi liI -l)fI2117t I(n-k '2,Xn k + 1l/2/ff .n-k

f - 2

k

$ C1(k)(htl("-k+1l/2/E)"-k L (htl"-k+I/f-(

J~2

where C l( k) := max 2 <;; J <;; k hi IIi I)J 1
2

• Thus from (2.5), we see that for
fl > 2k

k

11?,\2~11'<;;11I1 $ C 1(k)(I/2)"-k L (1/2)1 $ 2k C ,(k)(I/2)".
J ~ 2

Combining (2.6) and the last inequality, we deduce that

is valid for any positive integer fl > 2k. Thus for a given 8 > 0 we can
choose k so that for all fl large enough we have

Together with (2.3) this proves statement (j). I

Proof of Theorem 1. HiD. Assume that

for all j > jo and set Ao := max( 1, max f <;; ill 117i I). Let T be a fixed positive
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number. Then for (". k as defined in (2.4) we have

n-hl n

II(".k"'li,?e' ~ L Ib,,)e-
jr + L Ib,,)e-

jr

j-k+1 j-"-k+1

~ c(e- kr + (A o)(j,,+\lj,,/2. t e-ir ),
J-"-J,,+I

355

where C is a constant independent of k and n. From here, statement (ii)
follows easily. I

3. PRELIMINARIES FOR THE PROOF OF THEOREM ].2

In this section we state several lemmas that will be needed in the proof
of Theorem 1.2. Since some of the new lemmas are quite technical, we
relegate their proofs to the Appendix.

LEMMA 3.1 (Lubinsky [1]). Let f(z) = [,j~oaizj be a formal power
series, with ai "* 0 for j large enough.

If 0.2) holds for a number 1/ that is not a root of unity, then

m-I

lim D(n, m)/a~1 = n (l - 1/j)"'-J
n----+x j= 1

and

locally uniformly in C.
Assume that 1/j = ai+lai-I/a; has the asymptotic expansion 0.6) with

c\"* 0 and 1/ = 1. Thenform = ],2, ... , wehal'easn -> oc

m - \ { a( 1m) ( I )}D(n, m) = a;;'( _c
l
/n)m(m-ll/2 n jrn-J • I + ' + 0 - .

J~ 1 n n

Let pEN be a fixed number and the function f be defined for x > p.
We introduce the operator

flPf(x):= t (P)(-l)k f (X - k)
k=O k

640/79/3·4
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with Vllf(x) := f(x). Obviously,

LEMMA 3.2. For each pEON, there holds

VP(fg)(x) = k~J~)Vkf(X)VP-kg(X - k)

£ (p)Vkg(X)Pkf(X - k). (3.1)
k~() k

Further, iff(P)(x) exists, then

( 3.2)

for some ~" EO (x - p, x).

The relations 0.1) and 0.2) are well-known facts from the theory of
numerical methods (see, for example, [8]). From this lemma, it follows that

LEMMA 3.3. Assume that 1]) is of the form (1.6) with 1] = 1 and c, "* O.
Let N be a fixed positil'e integer.

(a) Then for each j < n!( N + J) we hal'e

j N

01],,-/= 1 + I:j8",_,U)!n'+MN +,U,n),
1= I 1"= I

n ~ oc, (3.4)

where .9'" s = 1, ... , N - I, are polynomials that do not depend on n but
only on the coefficients c" s = 1, ... , N - 1; the degree of each ,9!, does not
exceed s; there is a constant C I( N + J) that depends only on Nand c, '
s = I, ... , N, such that

(3.5)
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(b) For any positit'e illteger p and for j < (n - p)/(N + + 2p) there
holds

as n ~x, (3,6)

where C 2( N + 1, p) is a constant that does not depend on j and n,

From Lemma 3,3, we obtain

LEMMA 3.4. Let I, p, N E N be fixed. Then, for j < (n - p)/(N + 2p)
we haee

n ~ 'Yo,

where C/I, p, N) is a suitable positiee constant.

LEMMA 3.5. Let p, N EN be fixed. Then, for j < (n - p)/(N + 2p)
there holds

n ~ x.

We also need the following.

LEMMA 3.6. Let p, N EN be fixed. Then, for j < (n - 1 - p)/(N +
2( p + 1)) we haee

n ~x.

Remark 1. Lemma 3.3 may be applied to any product nf~/,,1]n-1 for
o :s; 10 < j and j sufficiently "small." Indeed,

j j + I-I"

n 1]n-1 = n 1](n-I,,+I)-I'
'~l" 1= I

and so Lemma 3.3 applies on replacing Il by Il - 10 + 1 and j by
j + 1 - 10 ,

In the special case when 10 = 0, we obtain for n sufficiently large and
for j + 1 < (n + 1)/(N + 1) that

J N

n 1] II -I = 1 + c IU + I) / n + L U + 1) .9", _ IU + 1) / (n + I)'
1-0 .-2

+ MN+1U + I,n + 1).
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We rewrite the last equality as

j N

OYJIl-t= 1 + Eu+ 1)&'_lU)/n'+./fi~'\I+IU,n). (3.7)
I~O s~l

Arguing as in the proof of Lemma 3.3, we easily establish that deg (fJ, .:-s; s;
moreover, for j + 1 < (n + I)/(N + 1) there holds

J
nN+1J' (J' n)1 <J'N+1C (N + 1)

v N+ I' - 6 ,

and for j + 1 < (n + I - p)I( N + 1 + 2p) we have

11l'I'J+fJ+ 1A"'lV+IU,n)l.:-s;jN+'C7(p,N + 1),

We notice that

n ---> 00',

n ---> 00.

( 3.8)

(3.9)

and

LEMMA 3.7. Let nand m be fixed positil'e integers. Then there holds (Jar
D(n,m)i=O)

7T1I , m + I ( z) - 'TTl!. m ( Z )

D( n + 1 m + 1) . Z" +m + 1
=(_1)'" ,

D(n,m)' QIl,m(z)' Qn,m+l(Z)

(3.11)

4. PROOF OF THEOREM 1.2

Let m be a fixed positive integer. We recall that D(n, m) = (an+j_Xlj~l

is the Toeplitz determinant of order m. We shall assume that D(n, m) i= 0
for each n E N. We set

m

Q () ~ m-k
fl,m Z = I..J qk,fl,m z ,

k~O

where qk. n, m is given by the expression

(_I)m-k

q =
k,ll,m D(n, m)

( 4, 1)

all

x
an + m

Q,,-m+ I

(notice that qm,ll.m = 1),

an - m + k all - m +k + 2
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It is known (see [4]) that

P" m( z) = D( n, m)-I

359

a n + m

X a,,-m+l

"L aj_mz j

j=m

In view of (4.1) we may write

an - m + k + 1

"I: a j - m +k Z }
j ~m ~ k

a l1 + 1

"L a;zi
}~()

This yields

111- I

= s"(z)Q,,.m(z) - L qk.".mzm-k{s,,(z) - S,,-m+k(Z)}.
k~O

From this, we get

R".m(u) = {P".m(ua,,/a,,+l)}/{D(n,m + l)(ua,.!a,,+I)"/D(n,m)}

(
s" ( ua" / a" + I) )
------=-" Q" m(ua,.!a"+I)a"D(n,m)/D(n,m + 1)
a,,(ua,,/a,,+I) .

a D(n m) m-l
n '~ m-k

- D( + 1) f.." qk.".m(ua,,/a"+l)n,m k~O

{
(s" - S,,_m+k)(Ua,,/a,,+l)}

X ".
a,,( ua"/a,, + I)

Now by (2.2), we may write
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where { ... }* denotes the sum of terms with nonpositive powers of u in
{ ... }. Applying (2.2)' and (4. I), we ohtain the formula

"
R"./I,(u) = 1 + L (h",/uJ)A",j'/lI'

j~1

where h". J is given hy (2.4), and

( 4.2)

A . =
II,}, m

(
(/" D( II, In) ) m

D( II In + I) L lfm
, k-li

/",11, m ( {/ (/" ) kfI 7J;, k I' I nT),~ " J'

11 -+- I f -'-- I I =-- I

for j = I,.", II - In

for j = II - In + I, .... II

(4.3 )

(we set n7_, .,. = 1 for k = 0).
It is known (see [3,4)) that for each m EO N

where

D( fl, m) := (D( fl - 1, m - 1) D( 11 + 1, m)} / ( D( fl, m - 1) D( 11, m)} ,

From this, we obtain

q",-k,JI,m

= !qm-k-I,,,,m-I
A

- D(I1,m)qm-k,,,-I,m-I'

\ -qo,,,_I,m_,D(I1,m)

for 1 :s; k :s; m 

for k = m,

Using these formulas, (4.3), and also the equality ° "TJ,.Io " + I = °"_1/0",
we obtain for j :s; 11 - m

A n ,i,1II = {D(I1,m)2/(D(fl,m + l)D(I1,m - l»}A",i,m-1

-{D(11 + 1,m)D(11 - 1,m)/(D(fl,m + l)D(fl,m - I»}
j

XA"_,,j,m_1 n TJ"-I'
i~ I

(4.4 )



ZEROS OF PADE APPROXIMANTS 361

Now let m be a fixed positive integer. We shall prove that for any
positive integer N and for every j < n/( N + 3m - 1) the following ex
pansion is valid as n ~:)J,

where T",., are polynomials of degree s m + 05,05 = 1, ... , N - 1, and

InNy (j' n) 1< c(m N)j'/v+",
.'~'.nl' -, , n ~ 00, ( 4.6)

with the constant dm, N) not depending on j or n. (We set T,II. s := 0 for
N = 1.) Also, for any pEN and for j < n /( N + m + 1 + 2( p + m - 1))
we shall prove that

n-'>oc (4.7)

for a suitable positive constant dm, N, p), where vI' is defined in Sec
tion 3. Furthermore we will prove that

IA I < . ( ) n'" + I
Il,j.m - (2. 111 , n-'>oc ( 4.8)

for j ? n/3m.
From (4.5) and (4.6), for N = 1 and j < n/3m, it follows that

where

An.].", = {fI U + i)}/m!+ ·'T1.",U, n),
I~ I

n ~ 00, ( 4.9)

( 4.10)

(here cl(m) = c(m, 1)).
The proofs of (4.5)-(4.8) are given in the Appendix.
Now we are in the position to prove Theorem 1.2. The proof repeats the

ideas of the proof of Theorem 1.1. For any fixed j EN, we obtain that

as n ~ oc. (4.11)

Let 1> be an arbitrary positive number and k be a positive Integer. From
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(4.2), we may write

KOYACHEYA AND SAFF

j-k + I

k 1I13m - 1

IIR II I + "A h -~j + "A b -~j
n.m lui > ell 5: ~ n,j,m JI,je LJ fl,j,m n,je

j~1

11

+ I: A",J.",b".je-~J = I + <;",,,,.k + <;;"""k + <;;;.""k·
j~f113m

We shall now estimate the last two terms.
Using (4.9), (4.10), and the fact that Ih,,) ~ ex for all nand j, where

ex is a suitable constant, we establish that

y' < -M/2
~n,m.k - ce ,

From (4.8) we obtain that

<;;;. "', k = 0 ( 1/n ) , n ~ x.

( 4.12)

Combining this last result, (4.1 I), and (4.12), and using the fact that t5 is
arbitrary, we conclude that

uniformly inside C \ {u: lui ~ I}.
It is not difficult to show that for iu I > 1

Indeed,

x { 1 m } 1 urn + I x { m } 1I: -,nU+i) j=-,-I: nU+i) j+m+1
j~O m',~1 u m. j~O ,~l U

U",+I 00 ( 1 )<m)
= (-1)"'_ L -.-

m ' UJ+I• j~()

( 4.13)

",U"'+I(1 U ")<"')
= (-1) --;! ~~

(-I)"'u"'+1 (-l)"'m!

m! (u - 1)"'+1

U",+I

(U-l)"'+I'
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If m = 0, then
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(u - l)m+1

This proves Theorem 1.2. I

u

u - 1 -=H1(-U
1

).1 - 1III

5. PROOF OF THEOREM 1.4

Let mEN be fixed. Recall that

n

Rn,m(u) = 1 + L An.i.mbn,iu-i,
i~ 1

where the behavior of A",i.m as n ~ 00 is described by (4.8)-(4.10) and
b".i' j = 1, ... , n, are given from (2.4) by the formula

i

bn • i = n TJ~-i+l'
l~ I

Hereafter, we shall write R n . m = R n .

Let E be a fixed positive number, E < 1, and determine n I from (A. I) of
the Appendix. We shall use in our further considerations the notation

where d l := -c 1/2 > 0. In accordance with the previous notations
loOln)! < E and n 21001n 2 )1 ~ CO) for an appropriate positive constant
CO) (see (A.2». With respect to the conditions of the theorem, we shall
assume that

(5.2)

for n > n'( > n I)'
Suppose the statement of Theorem 1.4 is not true. Then there exists a

disk W containing u = 1 such that R/u) *- °for every u E Wand for n
sufficiently large (n > nil > n'). Assuming that the radius of W is less than
1, we fix a simply connected domain '/Y, '/YC W U {u: lui> l} with 1,00 E
'/Y. Let Xn' n > n' be the regular branch in '/Y of the function Rn(ll)l/n,
determined by the condition Rn(oo)I/" = 1. The functions X,,(u) are
holomorphic (analytic and single-valued) in '/Y and, as it is easy to
establish (see, for example, [9]), uniformly bounded there. Hence {Xn}
forms a normal family in '/Y. On the other hand, Theorem 1.2 implies that
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X,,(u) ~ I as n ~ 00 locally uniformly inside {u: lui> l}. Thus, by the
theorem of uniqueness for holomorphic functions

X,,( u) ~ I, as n ~ 00, (5.3 )

locally uniformly throughout '7'.
Now select a positive number DII such that u = e - 21'0 E 9/ and consider

{" }-21> _ 21»
R,,( e ) - I +[ AII.),mb",)e

J .- ,

for 0 < 00 ,

We shall show that for each 0 sufficiently small Re{R
II
(e- 21>)} increases

as n ~ 00 with a speed 2: eCI>", where c is a suitable positive constant.
This contradicts (5.3).

It follows from (J .6) that there exists a positive integer nil' nil 2: nil such
that for n > n II the inequality

(5.4 )

holds. Indeed, from the inequality 2d, > 0 it easily follows that

2d, A ( I )1rJ,,1 = I - - + ? + 0 -2 '
n n~ n

which yields (5.4).
Further, we assume also that for n > no the following inequalities are

satisfied:

(5.5)

and

(5.6)

for a suitable positive constant ~(J), With respect to (4.10) and (4.8) we
may assume also that for n > no

for j < nj3m and

IA I < ( ) m+'".),m - c2 m n

(5.7)

(5.8)

for j 2: nj3m. We assume, also, without loss of generality, that c,(m) > 1.
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Now, using (5.4) and (5.2), we get

for j < n - no + 1 and
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(5.9)

(5.10)

for j z n - no + 1; here TJ:, = max" <" ITJ"I.o - iJ

Now set 0 1 = min{oo' d l(1 - E)/{6m! (cJ(m) + I)}}. We introduce the
functions

'PJ(o) := V(I){60/(d J(I - e)) - q-2,
'P2( 0) := ('P,( 0)/2)(6/d j ( 1 - e) (

Select the positive number 0, 0 < 01, such that

and the number 0/d 1(1 - E) is irrational.
Without loss of generality, in our further considerations we shall assume

for n > no that the following additional inequalities are fulfilled:

and

Re TJ" z I - (2 d ) + o)jn > 0

n' 10g{I - (2d l + o)/{n{I - 6O/d l (I - e)} + 2}}

z - 2( d I + 0) / {I - 60 / ( d I (1 - e))}.

(5.11)

(5.12)

Now, we easily obtain that for n > no and for every positive number j,
satisfying the inequalities (6no)/(d,(1 - e» - 1 < j < n - nf) + 1, there
holds

Ib ./ < e- Vij
rl.) - •

Indeed, from (5.5) we obtain

and hence

Combining this inequality and (5.9), we obtain (5.13).

(5.13)
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Further, from (4.9), (5.13), (5.7), and (5.8) we see that

I
"~'I/ A· be28jl < c*(m)n m+ 1 '" e- j8 ::; It?(2),
~ . n,j,m n,J - ~

j~08l1/dl(l-d j~h8l1/dl(I-d

(5.14)

where c*(m) = max(c,(m), cim» and '6"(2) is a suitable constant.
On the other hand, in light of (4.10) and (5.10) we may write

11

< c**(m)n m+'
j=n-no+]

where

c**(m) := C (m)I'l"1* 1"0("1/+')/2.
2 'lflO

Therefore, there holds for n sufficiently large

I
. t A",j.mb".je

28i !::; l:f(3).
)=n-no+ 1

(5.15)

Now let j ::; 68n/{d,(I - c)} - 1. In view of (4.10) and of the choice of
8, there holds

where '6"(4) = c,(m)6/(d,(I - c)). Hence

11m A",i,ml::;l:f(4)8r.

and

(5.16)

{

111 }Re A",j,m > jm{1/m!- '6"(4)8} + l~' (j + I) - jill /m!. (5.17)

Denote by ,9!(j) the polynomial on the right-hand side in the last inequal
ity. In virtue of the choice of 8, it follows that the degree of ,9!(j) is
exactly m and all its coefficients are positive. Therefore we may write, for
1 < j ::; 68n{d,(I - E)} - I

Re A",j.m ~,9!(j) > O. (5.18)
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Now, consider

j } I

bn. i / n {Re 7]n-J+/}1 = n {I + i(Im 7]n-i+/)/(Re 7]n-i T d}
I~ , l~ 1

j

= n {I + P-n-i+I}I,
l~ 1

where

P- n -i+1 = i(Im 7]n-i+d/(Re 7]ni+/)'
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From (S.6), we get for j ~ 68n/{d,(l - E)} - I, for 1= I, ... ,j and for
n > n;) ~ no/O - 68/(d\(l - E))}

where ltf(S) = 'P,(8) = W(l){68/(d l(l - E) - l}-2.
Set

(S .19)

and
i

F( XI"'" xi) := n (l + Xl (
l~ ,

By the choice of j and n, (5.19) implies that

IF ( X \ , ... , xi) - 11 sit F, I( 0, ... , 0) x II
I~ I

I
j I 't;"(S) (j+ I)

= L Lxi S -2- j ~ \1/(6)15 2
,

l~l n 2

where

¥f(S) ( 6 )2
'1&'( 6) := -- = 'P2( D).

2 dl(l-E)

The choice of 15 implies

thus we obtain

(S.20)
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and also

Consequently,
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1

(I - 'P2( 0)0 2) n {Re 7]1/ -i+'}' :s; Re hl/. j
,~ I

1

:s; n (Re 7]1/-1+,}'(1 + 'P2( 0)) (5.21)
,~ I

and

1

11m hl/) :s; 'P2(0)02n {Re 7]1/-i+'}'.
'-I

On the other hand, the choice of [, and (5.11) yields

1

n {Re 7]1/-1+'}'
,~ I

(5.22)

~ {I - (2d , + o)/{n{1 - 60/d l(1 - E)} + 2}y{J+J)/2 > O. (5.23)

Finally, from (5.18), (5.2 I), (5.16), and (5.22) we obtain

Re AI/.1.m Re hl/. J - 1m AI/.i.m 1m hl/. J

j

~ Q(j) n {Re 7]1/-J+'}'
,~ I

~ Q(j ) {I - (2 d I + 0) / {n {I - 68 / d I(I - E)} + 2} y<i + 1)/2,

(5.24)

where, in view of (5.17),

The choice of [, ensures that the degree of the polynomial Q(j) is exactly
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111 and all its coefficients are positive. Combining this result and (5.11) we
obtain

Re AI/.1.m Rc bl/. 1 - 1m AI/.1.m 1m hl/. 1 > o. (5.25)

Select a positive number ll' such that a < 20 and set K := (20 - a}{1 
60/ d)(1 - d} /( d, + 8). Consider

It is easy to establish that for j ~ Kn - 1 the inequality

1

TI{ReT] . }'>e(,,-n I1
I/-j +'

I~ I

is valid. Indeed, from the choice of K we get

(5.26 )

-{(j + 1)/2n}{2(d, + 0)/{1 - 60/d,(1 - E)}} + 20 > a.

Applying (5.12) we see that for n sufficiently large

{(j + 1)/2}log{1 - (2d) + o)/{n(1 - 6O/d,(1 - E) + 2}} + 20 > a.

Inequality (5.26) now follows from (5.23) and from the fact that n > n'o.
Combining now (5.14), (5.15), (5.24), and (5.26) we get

Re R n ( e- ZIi ) ~ e"KIl min Q(j) 'iIf'(7),
1> 0

for some positive constant '3"(7). Consequently, lim XJexp( - 20)} ~

exp{aK} > 1 for any 0 sufficiently small. This contradicts (5.3). Hence,
Theorem 1.4 is proved. I

6. PROOF OF THEOREM 1.6

Let

(
uan )/ 1/TIn.m(u) := TTI/.m -- (al/(ual//al/+d).

al/+'
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From Lemma 3.7, we obtain

(-I)'" D(n + I,m + I) . (Ua ll )"'+1

a" D(n,m) a,,+l

I
x-------------~

Q", ",( ua,,/a ll + I )QII. "'+ l( ua,,/a,,+ I)

Now utilizing Lemma 3.1 we see that except at the zeros of B"" B", + I

there holds

(-I)"'U"'+1 '"
lim {II"."'+I(ll) - [J1I.",(1l)} = n (1 - 7]J) (6.1)

,,-->X B",(ll)B"'+I(ll) j~l

(we set nj~ 10 - 7]J) = 1 for m = 0). We remark that (6. I) is also valid in
the case when 7] is a root of unity, but 7], ... ,7]'" =I- 1.

On writing (recall (2.2»

111 - I

L (IIII.k+l - II",d(ll),
k~O

we obtain 0.9) from (6.1). I
Proof of Corol/ary 1.7. This follows immediately on multiplying (1.9) by

Q" ",(ua ,.Ia" + I) and applying Lemma 3.1 and Theorem 1.1. I

ApPENDIX

Proof of Lemma 3.3. Let E be an arbitrary positive number. By (1.6),
for any integer 05 ~ 0, there is a positive integer n, such that

I.., -1-c/n-c/n2-"'-c/nJI<E/nJ'In I 2 s (A.l )

for every n ~ n,; we assume that no .::; n I'::; ... .::; n,. Obviously there
exists, for 05 ~ 0, a nonnegative constant C(05) such that for n ~ n,

(A.2)

(C(05) > 0, if Cd I =I- 0; if C,+ 1 = 0, then we set C(05) := E,)

For z =I- 0, let log z be the principal logarithmic function, i.e., log z :=
In Izi + i Arg z, -77' < Arg z .::; 77'. Then, for 111'1 < I, there holds

x

log(l+w)= L(-I)k-lWk/k.
k~1
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Before proving Lemma 3.3, we shall first show that for each Nand
j < 1I/(N + 1) there holds

J j il/

log n Tf ll -/ = L log Tf ll -/ = L jp,-IU)/II' +A;·v + IU, n), (A.3)
1- I I~ 1 I~ 1

where P, _ I are polynomials of degree not exceeding .I' - I, .I' = I, ... ,
N - I, which depend only on C j , i = I, ... , N;

and

(A.4)

I ·V+I,<r (')1 (N 1)'Ioi+1W .tl/ll+1 j,n < C 1 + F , as 11 -> x, (A.S)

where c I( N + I) is a constant that depends on N.
Indeed, let j < n/(N + I). For n > 2n,v+1 we may write

j Jill j

LlogTfIl-/= L Ldj(n-I)'+dN + 1 LI/(n-/)N+!
I-I I~I ,~I I~I

j

+ L o(I/(n _/)/11+1)
1- I

(obviously, d 1 = C I)' We rewrite the last equation in the form

j N

L log Tf ll -/ = L q,U)/n 2 +·H'/II+IU, n),
I~ 1 ,~ I

where

(A.6)

j j

+ d'V+1 L 1/(11 _1)N+1 + Lo(I/(n _/)N+I) (A.7)
I~l /=1

and

We see that for each .1', .I' :$ N, q,(j) is a polynomial of degree not
exceeding .1', since, as it is known, for each fixed nonnegative integer k the

64009,'3·5
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sum q(k, j) := r:.t Ilk is a polynomial of degree exactly k + 1 and
q( k, j) = j , q'( k, j), where q'( k, j) is a polynomial of degree k. There
fore, q, may be written in the form q,( j) = j , p, _ l(j), where deg p, _. I ::; s
- 1. We notice also that q,(j) depends only on ell"'" d" This, as well as
the construction of ,~v + I( j, n) prove (A3) and (A4), Also observe that
Po = ('I'

Let us now consider n/ll+ !f(N + l(j, n) for n > 2n N+ I and j < n/( N + O.
From (A j) we get

(A.8)

where

,2'::; max, Id,l I:.

j t n/II' + I -.I { . t (s + k - 1) (l/ n)k}
1<;1'<;/11 I~I s~1 k-N+l-s k

N

::; j max Id,l L (j'v+ 1-,/( S - I)!}
I <;,' <;N\~ I

x

, I: {(k + N)!/(k + N + 1 - s)!} 'U/n)k.
k~1I

It is easy to check that for j < n/(N + 0 the inequality

holds, where Cj I \( N + 0 is a positive constant. Combining this result and
(A8), we get (A5),

We now turn to the proof of the lemma. Let N E Nand E be fixed,
n > 2n N+ I , and j < n/(N + 1). For nf~I11/1-' we have

We rewrite nf= ,11/1-1 in the form

j N

fl11/1-'= 1 + Lj'9",_IU)/n s +MN+lU,n),
I~I s~l
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where MN + n, n) is given by
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M,v + IU, n )

~AfN.,(j.,,) + (.~,(I/k!)' [~>p,-,(j)/,,·nN"

+ k~2 (Ilk!) :~: (;)( NE~ 'j. p,_,U)jn'r
. k-r

. ( .ItN - k + 2( J, n ) )

and

x

+ I: (Ilk!)' (c,jln +.1t2(j,n))k
k~N+'

( ... )(-N-I):= nN+ , + n N + 2 +

(A.9)

Since deg p,_, ~ s - I, s = 1, ... , N, it follows that .'?,_,(j) are polyno
mials of degree ~ s - 1, respectively.

We consider n N +'MN +,(j, n) as n ---> x and j < nl(N + 0. For
n N + !LN + ,(j, n) we apply (A.S). Denote the last sum in (A.9) by BN • In
view of (A.S), we may write

so that

In N + 'B,,,,I ~ jN+ '( C\2)(+ 1 I: (1Ik!)(jC\2)/n (-/',1-'
k ~N+ I

(A.lO)

Now we set
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and consider II/V + lA /'0" For each r = 0, ... , k - I, we easily obtain that

(

/'0'-1<+1 )r
\~l j' p, - I(J ) I n '

= (J/Il)r L .W"
11 +, +-/;\ ""I- r

() <;', <; r

\ I.. + I

ill-I< + I

TI (P,_l(J)/Il,·I}".
i-I

where .vl,).\ ,,) are the corresponding coefficients, so that we may write

From here and from (AS) we get

/1/ I< - I

IIl N+IA,'11 .,; n
N

+
1 1<~2 (Ilk!) r~) (; )(C 1( N - k + 2))"-'

'(Jln)(Nk+2H-,)+r(C\4)(N + I))

iIi

.,;C\Sl(N+I)·jN+I·L(l/k!)
1<-2

Finally, we obtain

I< - I

X L (Jln)(N-k+2U
r~()

,)+r-N'-I

since, as is easy to verify, (N - k + 2Xk - r) + r ~ N + 1.
Using an analogous argument, it can be shown that

(A.II)

Combining this result, (A 10), (AI I), and (AS), we obtain (3.5).
Hereafter we shall write M,'1 instead of MN + I and shall prove 0.6) for

N>1.
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The proof of (3.6) is based on properties of V'fI(I/n"'), m, pEN, n > p.
Set

cP", {,(n) = V'l'(_l ).
. n'"

From <3,2) it follows that

IcP",.fI(n)! S m(m + 1)··· (m + p - l)/(n - p)"'+l'. (A.12)

Now, from (A7) we have

j

+ I: V'l'o{l/(n _1)N+I'} = /1 + /2 + /,. (A.13)
I~ I

Let E be a positive constant, n - p > 2n N+I" and j < (n - p)/(N +
2p). Applying (A12), we obtain for /)

N-I

1/115j' max Id,1 L L /
l.;s.;N-] s~1 k=N-s

(S+k-l)!{P-1 }
. n(k+s+i) /(n_p)k+<+l'

k!(s-l)! i~O

N-I

5 j' max Idsl L {j/(n - p)}N-'{l/(n _ p)'+l'}
].;s.;N-) s~]

x. k_N+s(k+s+p-l)!
k~~_j{J/(n -p)} k!(s - 1)! .

Arguing as in the proof of (A5), we establish that

I
x (k+S+P-1)'j" {'/( n - )}k-N+., . < C(ll( N )

k~';;-s ] P k!(s - 1)! - I ,p

for S = 1, ... , N - 1. Consequently

(A.14)
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In the same way we get (for j < (n - p)j( N + 2p»

II I (21(N)' '( )N+I+P2 ~CI ,p 'J/ l1-p .

For I, we have, from (A2) (for n - p > 2n N + p )

(A. IS)

~ t t(p){nlv+p/(n-l-k)'''v+P}
k~() I~ I k

'{(n -1- k)'''v+Po(I/(n -1- k))N+P}

~ EjC\11( N, p).

Combining this result, (AI4), and (AlS), we get from (Al3)

n -> ,Xl (A.16)

for j < (n - p)/(N + 2p) and a constant c\4)(N, p) that does not depend
on j and 11. Finally, using (A9) and (AI2) for 1,2, ... , N, 0.3), and the
fact that deg p, ~ s, we arrive at 0.6). I

Proof of Lemma 3.6. We have

vP{11VMN (j, 11 )} = t (-I) k ( P ) (11 - k) VMN (j, 11 - k)
k~1l k

=n t (-I)k(P)VMN(j,n-k)
k~() k

- p ~~>-I) k ( P ~ 1 ) VMN (j, 11 - 1 - k)

= nY"+ IMN(j, n) - pVPM/Ii(j, n - 1),

so that

Ifl''1+ /TP{I1VM/Ii( j, 11)} I = nN+ p +IVP+ IMN( j, n)

- pnN+PVPMN( j, n - I).

Thus Lemma 3.3 furnishes the desired estimate for j < (11 - 1 - p)/ N +
2(p + 1)). I

Proof of Lemma 3.8. By definition,

f(z)Q".m+I(Z) - p".IIl+'(z) = 0'"."1+1' zll+m+2 +
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and

f(z)QII,m(z) - PII,m(Z) = all,m' Zll+m+l +

From these relations, we get

(Qn,m' Pn . I1t + 1 - Q/f,m+l· Pn.m)(Z) = a ll • 1ft • ZI1+m+l.

Utilizing (1.5) we determine that

an, m = ( - I)'" D (n + I, m + I) / D ( n, m) ,
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and 0.11) follows. I
Proofs of (4.5)-(4.8). We shall establish the statements (4.5)-(4.8) by

induction on m. Consider first the case when m = I. Let F be a positive
number, N E N, N ~ 2, be fixed. From (1.6) we have

N

-c\/{n(1 - 7']n)} = 1+ L gjn i + o(l/n N
),

i= I

where

gl = -C2/C I ·

Thus for n sufficiently large, say n > n N' there holds

n ~ 00, (A.17)

(A,18)

We assume hereafter that n > 2n N •

For m = 1 and j ~ n - I, we have from (4.3)

AII,i,1 = (I - rl7']lI-i)/(1 - 7']11)'
I~()

From (4.11) and Remark 1 of Section 3 we obtain for N ~ 2

N-I

A II .i . 1 =j + I + I: TI,,(j)/n' + ,':TN.1U,n),
s~l

where, in view of (4.12),

(A.19)

TI.IU) =j(j + 1)(1 + c,)/2,

T1,sU) = L U + l)&,,(j)gs_,,1c l ,

"1 =0

s = 2, ... ,N - I (A.20)
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,{ N-' U + I)~' (j)
,'T,v"U,n) =o(l/n!\) j + I + .L,'I

,~ , e 111

+n.p~v+,u,n){1 + i~lgJni}/e,
/II N-I

+ L (gjn') L U + I )~',U)/nll,
,~I II -N-I

(A,21)

From this we see that deg TI.,(J) :s; s + I, s = I, ... , N - 1. In particular,
for N = I, we have

,71,1(j, n) = (j + 1)(gJn + 0(1/11»)

+ nJll'2(j, n){1 + gl/n + o( I/n)}/e,.

Now consider nN,'T,v. I(J, 11) for j < 11/( N + 2). Since for such numbers j
the inequality j + I < (11 + 1)/( N + I) holds for every n sufficiently
large, we may apply 0.8) of Remark 1., Combining (A.2J) and (A.2), we
obtain for j < 11 /( N + 2)

/II N-l

+ I: Ig,I(}+ I) L I~,U) I
i~ I II ~/II-s

:s; e(l, N)j'v+1

for a suitable positive constant c( I, N).
Now let p be fixed, pEN, and j < n/(N + 2 + 2p). In this case, we

also have j + I < (11 - I - p)/( N + 1 + 2p) for 11 sufficiently large, so
that 0.9), for 11 > 11/11+1" and Lemma 3.6 are applicable with respect to
fl'N+1' . I1 P{n,VN +,(j, n)}. Now, using for n > n N +

p
the representation

N+p

o(l/n N
) = I: gjn l + O(I/I1 N +p

),

s~N

(A.2J), and Lemmas 3.2, 3.4, and 3.5, we get inequality (4.7) for m = 1.
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Now consider A",i, 1 for j z in/3 and for n > 3n o' For j ~ n - I we
may write from (4.3) that

~ I + L {((n - i)/n)ll - 11,,-il}/{ll - 7)"I((n - i)/n)}
i~ 1

j

+ L {((n - i)/n)11 -7),,-tl}/{ll -7)"I((n - i)/n)},
i=n-n o +]

Now, from (A.2) of the Appendix, we get

C(O)
1 + ..,.---------,.-

In(I-1),,)1

n max 1 < k <" 11 - 11k I+ __..,.---_------"-0_..,.----

In(l - 1),,)1

(A,22)

where '/f;"(E) is a constant depending only on E,

Finally, for A",,,, 1 we obtain

and so

IA I < C"( ) 11 l"I~"o-I)/2
",",1 - E 7)0 n,

where 7)0:= maxl11kl, k < no, and C"(d is a suitable positive constant.
The last inequality and (A.22) yields (4,8), Thus our assertion is proved for
m=l.

Suppose now that our hypothesis is true for I, 2, ' .. ,m - 1, m z 2;
namely for any N E N, and j < n/(N + 3m - 4)

{

m-I }

A",i,m-I= [1(i+i) /(m-l)!

N-I

+ L Tm_l,\(i)/n' + ,'7N ,m_I(j,n),
5~1

n->x,
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where T,,, ~ I. /j) are polynomials of degree not exceeding s + 111 - I, S =

I, ... , N - I; for any p, p = 0 or pEON and for j < (n/(N + m +
2( m - 2 + p))), there holds

I
n l\; +I' V J! '7 ' (J" n) I < C(m - I N p) J' N ~ m - 1

'/\',m-) ,. - " ,

Suppose also that

n ~ 00. (A.23)

IA""i.m~11 :s; c(m - I)n"', n~x (A.24)

for j > n/(3m - 3), where c(m - ]) is a suitable positive constant.
Let E and NEON be fixed. Lemma 3.1 yields, for n sufficiently large

(n > n' = n'(E» the representation

(A.25)

We assume also that n' > 2n N , where nl\;' is determined by (AI).
Applying Sylvester's identity, we obtain

(D(n + l,m)D(n - I,m))/(D(n,m + I)D(n,m - 1))

= (-n/mc l ){ 1 + i~If3I.m/ni + mcl/n + O(I/n
N

)}. (A.26)

On introducing the notation

N

F".,...N = L f31.m/ni + o(l/n N)
i~ 1

and using (A25) and (A26), we can rewrite (4.4) in the form

A".i.m = (-n/mc , )(1 + F".m ..I>i)A""J,"'~1

i

+ (n/mc l )( I + F".m. N + mc,/n) A" ~ I.i.'" - 1n 7]" -i'
i~ I

From this we obtain for j < n - m

A" .i" m = (I + F".,... N)( n / mc I )( A" - I. i. ,.. - 1 - A".,.,.. - 1 )

+A,,-I.,.,..-I{(l + F".m.N)(n/mc d (D(7],,-; - I))

+ iD 7],,-} (A.27)
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First we observe that for n sufficiently large and j < n I( N + 3m - 1) it
follows from the induction hypothesis that

(1 + Fn,III. N )( n I mc 1)( An _ ,.). III _ I - An. j. III _ I )

where

ill -- ,

" T**( ')1 I' -/1.." 11I • .\ j n + ·'/N.III'
s~1

(A.28)

and

~ . ( -s - k + 1) k
T,:-I.s(i) = k7'1 T,n-l.l-k+I(J) k (-1) Imc"

s = 1, ... ,N- 1 (A.29)

. 1 + F".III.N
- nv.~'Ii'+,.III_,(J, n) mc

I

N-l T,:.,(i) N
{3sl' In

+ L: L ----
,I~ I

n.\
Sl =N-s

nSI mC I

(A.30)

(here (30,1II = 1). Notice that the degree of T,~~ J..\ does not exceed
m - 1 + s.

Also, we have for j = nl(N + m + 1 + 2(m - 1)), the inequality

I v + I,., - (.) I < ( 1, N + 1) j' N +I+III - IIn .fl' ~··YN+J.III-1 j,n _c m-

The last inequality easily implies that

(A.31 )
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Furthermore for any pEN, we have

N + p n I' ( n~ (- .)) ,v + I' + 1171' + I ~ (')n ~' n~·,'j'N+I.II/-1 J,n =n' ~'3'/V+I,II/-1 J,n

Now using (A.30) and the induction hypothesis, applying Lemma 3.2 to
.'7,~.II/( j, n), and keeping in mind that deg T,,,- I. s :::;; m - I + .1', we obtain

In/v+I'VP'7', (J' n)1 < c"(m N p) 'J'N+m
• l\J,JrI' - " • (A.32)

Notice that in (A.32), j < n/(N + m + I + 2(m - I + p».
Now set B,v.mU, n) := (I + FIl,m,N)(fl/mcl)(nf~I1]Il_{ - J) +

nf~ 1'17,,-;· By virtue of Lemma 3.3, we may write

N-I

BN.mU,n) = I +j/m + L/Y',;'.,U)/ns+M'~,II/U,n), (A.33)
s~1

where

and

N-- 1

+ o(l/nN)(I/mc l ) L j.9,U)/n'
,\'~ I

(A.34)

.9,;'.\U) =j.9,-IU) + L j{3,-s"lI/g,/jHI/mcd, s = I, ... ,N - 1.
\I~O

(A.35)

(Here {30.m = 1 and, as in the previous notation, goU) = c l .) Notice that
deg .9;;jj) :::;; s + 1.

Notice also that Lemmas 3.2, 3.5, and the bound 0.6) are applicable to
MfJ.m(j, n) for j < n/(N + 1) and for j < «n - p)/(N + I + 2p», re
spectively. From (A.34) we get, for p = 0, I, ... ,

(A.36)
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For A" _ U 111 _ IBN. ",(j, n) we get from (A33) and the induction hypoth
eSIS,

A" -I.j.m-- I B,"i.l1I( j, n)

(

",-1 N-IT(j),V-I-,( )( I)kn (j + i) / (m - I)! + L 111 - 1,,' L -, S ~ -

;-1 ,~I n k~() k 11

N- I T ( .)+ L m-I., }

n'
i: (-5)(_ ~)k + ,'7".",_I(j,1I _

k _/1/-, k 11

Introducing polynomials T,~.*,*(j} wc can write the above equation in the
form

A Il _I.}.m_I BN.I1I(j,n)

{

", - I .IV - 1 T*** (j) }n (j + i)/(m - I)!+.L "'.' , + ,~':.m(j,n)
I ~ 1 1"_ I n

j /1/-1.'1"* .(j) }
~ m,,\ M* (' )+ - + '- . + N.m J, n .

m I".~I /I'
(A.37)

Notice that deg T,~.*,*(j) ~ 5 + m - I.
Obviously, inequality (A23) with respect to .'7I'/.m- /(j, n - I) holds for

j < n/(N + m + I + 2(m - I + p», p = 0, I, .. " and for n sufficiently
large. From (A27), (A28), and (A37), we finally get

", N-I
A".}.m = n (j + i)/m! + L T,,,,J j)/n' + ST,v. m(j, n),

i~ I .I'~ I

where

nl- I

T"I.\ (j) = n (j + i) .9",;' .,(j ) / (m - I)!
i~ I

+ L T,~~i., ,(j) ,9"/:'., -,,u) + T,,*:.*. (j),
'\-1'0-) \

( A.38)
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s = I, ... , N - I, and
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'~V.m(j,n) = ,7,~.m(j, n)

+ ,~\~. m - I(j , n - I)

X {I + j/m + 1:~!I.'1"I;"S(j)/n' + M~.m(j, n)}

+ M~.I/(j, n) CD! (j + 1)/( m - I)! + ~~II T,~.*,* (j) /n'}
N-I N-I

+ L {T,~.*,* (j) /n'} L /J",;'.,,(j) /n".
,,~I '" ~N-"

(A.39)

Obviously, the polynomials T,I/)j) do not depend on j and nand
deg T,,,.Jj) ~ m + s. Also, taking j < n/(N + m + 1 + 2(m - 1 + p»,
p = 0, I, ... , using (A3 I), (A32), (A36), and the fact that deg T,,, _I.' ~

S + m - 1, we obtain the required inequalities (4.6) and (4.7) for suitable
constants c(N, m) and c(N, m, p).

Next we consider the behavior of AI/.J.m for j ~ n/3m as n -> 00. For
n - m > j ~ n/(3m - 3), (4.8) follows from the induction hypothesis
(A24) and from (A27). For n/3m ~ j < n/(3m - 3) we use (A27),
(A24), (A23) for p = 0 and the induction hypothesis. And finally, for
j > n - m, (4.8) follows from (4.3). Thus, we have shown that the induc
tion hypothesis is true. I
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